Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvvolioof Structured version   Visualization version   Unicode version

Theorem fvvolioof 40206
Description: The function value of the Lebesgue measure of an open interval composed with a function. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
fvvolioof.f  |-  ( ph  ->  F : A --> ( RR*  X. 
RR* ) )
fvvolioof.x  |-  ( ph  ->  X  e.  A )
Assertion
Ref Expression
fvvolioof  |-  ( ph  ->  ( ( ( vol 
o.  (,) )  o.  F
) `  X )  =  ( vol `  (
( 1st `  ( F `  X )
) (,) ( 2nd `  ( F `  X
) ) ) ) )

Proof of Theorem fvvolioof
StepHypRef Expression
1 fvvolioof.f . . . 4  |-  ( ph  ->  F : A --> ( RR*  X. 
RR* ) )
2 ffun 6048 . . . 4  |-  ( F : A --> ( RR*  X. 
RR* )  ->  Fun  F )
31, 2syl 17 . . 3  |-  ( ph  ->  Fun  F )
4 fvvolioof.x . . . 4  |-  ( ph  ->  X  e.  A )
5 fdm 6051 . . . . . 6  |-  ( F : A --> ( RR*  X. 
RR* )  ->  dom  F  =  A )
61, 5syl 17 . . . . 5  |-  ( ph  ->  dom  F  =  A )
76eqcomd 2628 . . . 4  |-  ( ph  ->  A  =  dom  F
)
84, 7eleqtrd 2703 . . 3  |-  ( ph  ->  X  e.  dom  F
)
9 fvco 6274 . . 3  |-  ( ( Fun  F  /\  X  e.  dom  F )  -> 
( ( ( vol 
o.  (,) )  o.  F
) `  X )  =  ( ( vol 
o.  (,) ) `  ( F `  X )
) )
103, 8, 9syl2anc 693 . 2  |-  ( ph  ->  ( ( ( vol 
o.  (,) )  o.  F
) `  X )  =  ( ( vol 
o.  (,) ) `  ( F `  X )
) )
11 ioof 12271 . . . . 5  |-  (,) :
( RR*  X.  RR* ) --> ~P RR
12 ffun 6048 . . . . 5  |-  ( (,)
: ( RR*  X.  RR* )
--> ~P RR  ->  Fun  (,) )
1311, 12ax-mp 5 . . . 4  |-  Fun  (,)
1413a1i 11 . . 3  |-  ( ph  ->  Fun  (,) )
151, 4ffvelrnd 6360 . . . 4  |-  ( ph  ->  ( F `  X
)  e.  ( RR*  X. 
RR* ) )
1611fdmi 6052 . . . 4  |-  dom  (,)  =  ( RR*  X.  RR* )
1715, 16syl6eleqr 2712 . . 3  |-  ( ph  ->  ( F `  X
)  e.  dom  (,) )
18 fvco 6274 . . 3  |-  ( ( Fun  (,)  /\  ( F `  X )  e.  dom  (,) )  -> 
( ( vol  o.  (,) ) `  ( F `
 X ) )  =  ( vol `  ( (,) `  ( F `  X ) ) ) )
1914, 17, 18syl2anc 693 . 2  |-  ( ph  ->  ( ( vol  o.  (,) ) `  ( F `
 X ) )  =  ( vol `  ( (,) `  ( F `  X ) ) ) )
20 df-ov 6653 . . . . 5  |-  ( ( 1st `  ( F `
 X ) ) (,) ( 2nd `  ( F `  X )
) )  =  ( (,) `  <. ( 1st `  ( F `  X ) ) ,  ( 2nd `  ( F `  X )
) >. )
2120a1i 11 . . . 4  |-  ( ph  ->  ( ( 1st `  ( F `  X )
) (,) ( 2nd `  ( F `  X
) ) )  =  ( (,) `  <. ( 1st `  ( F `
 X ) ) ,  ( 2nd `  ( F `  X )
) >. ) )
22 1st2nd2 7205 . . . . . . 7  |-  ( ( F `  X )  e.  ( RR*  X.  RR* )  ->  ( F `  X )  =  <. ( 1st `  ( F `
 X ) ) ,  ( 2nd `  ( F `  X )
) >. )
2315, 22syl 17 . . . . . 6  |-  ( ph  ->  ( F `  X
)  =  <. ( 1st `  ( F `  X ) ) ,  ( 2nd `  ( F `  X )
) >. )
2423eqcomd 2628 . . . . 5  |-  ( ph  -> 
<. ( 1st `  ( F `  X )
) ,  ( 2nd `  ( F `  X
) ) >.  =  ( F `  X ) )
2524fveq2d 6195 . . . 4  |-  ( ph  ->  ( (,) `  <. ( 1st `  ( F `
 X ) ) ,  ( 2nd `  ( F `  X )
) >. )  =  ( (,) `  ( F `
 X ) ) )
2621, 25eqtr2d 2657 . . 3  |-  ( ph  ->  ( (,) `  ( F `  X )
)  =  ( ( 1st `  ( F `
 X ) ) (,) ( 2nd `  ( F `  X )
) ) )
2726fveq2d 6195 . 2  |-  ( ph  ->  ( vol `  ( (,) `  ( F `  X ) ) )  =  ( vol `  (
( 1st `  ( F `  X )
) (,) ( 2nd `  ( F `  X
) ) ) ) )
2810, 19, 273eqtrd 2660 1  |-  ( ph  ->  ( ( ( vol 
o.  (,) )  o.  F
) `  X )  =  ( vol `  (
( 1st `  ( F `  X )
) (,) ( 2nd `  ( F `  X
) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   ~Pcpw 4158   <.cop 4183    X. cxp 5112   dom cdm 5114    o. ccom 5118   Fun wfun 5882   -->wf 5884   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167   RRcr 9935   RR*cxr 10073   (,)cioo 12175   volcvol 23232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-ioo 12179
This theorem is referenced by:  volioofmpt  40211  voliooicof  40213
  Copyright terms: Public domain W3C validator