MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gchen1 Structured version   Visualization version   Unicode version

Theorem gchen1 9447
Description: If  A  <_  B  <  ~P A, and  A is an infinite GCH-set, then  A  =  B in cardinality. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
gchen1  |-  ( ( ( A  e. GCH  /\  -.  A  e.  Fin )  /\  ( A  ~<_  B  /\  B  ~<  ~P A
) )  ->  A  ~~  B )

Proof of Theorem gchen1
StepHypRef Expression
1 simprl 794 . 2  |-  ( ( ( A  e. GCH  /\  -.  A  e.  Fin )  /\  ( A  ~<_  B  /\  B  ~<  ~P A
) )  ->  A  ~<_  B )
2 gchi 9446 . . . . . . 7  |-  ( ( A  e. GCH  /\  A  ~<  B  /\  B  ~<  ~P A )  ->  A  e.  Fin )
323com23 1271 . . . . . 6  |-  ( ( A  e. GCH  /\  B  ~<  ~P A  /\  A  ~<  B )  ->  A  e.  Fin )
433expia 1267 . . . . 5  |-  ( ( A  e. GCH  /\  B  ~<  ~P A )  -> 
( A  ~<  B  ->  A  e.  Fin )
)
54con3dimp 457 . . . 4  |-  ( ( ( A  e. GCH  /\  B  ~<  ~P A )  /\  -.  A  e. 
Fin )  ->  -.  A  ~<  B )
65an32s 846 . . 3  |-  ( ( ( A  e. GCH  /\  -.  A  e.  Fin )  /\  B  ~<  ~P A
)  ->  -.  A  ~<  B )
76adantrl 752 . 2  |-  ( ( ( A  e. GCH  /\  -.  A  e.  Fin )  /\  ( A  ~<_  B  /\  B  ~<  ~P A
) )  ->  -.  A  ~<  B )
8 bren2 7986 . 2  |-  ( A 
~~  B  <->  ( A  ~<_  B  /\  -.  A  ~<  B ) )
91, 7, 8sylanbrc 698 1  |-  ( ( ( A  e. GCH  /\  -.  A  e.  Fin )  /\  ( A  ~<_  B  /\  B  ~<  ~P A
) )  ->  A  ~~  B )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    e. wcel 1990   ~Pcpw 4158   class class class wbr 4653    ~~ cen 7952    ~<_ cdom 7953    ~< csdm 7954   Fincfn 7955  GCHcgch 9442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-f1o 5895  df-en 7956  df-dom 7957  df-sdom 7958  df-gch 9443
This theorem is referenced by:  gchor  9449  gchcda1  9478  gchcdaidm  9490  gchxpidm  9491  gchhar  9501
  Copyright terms: Public domain W3C validator