| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gchxpidm | Structured version Visualization version Unicode version | ||
| Description: An infinite GCH-set is idempotent under cardinal product. Part of Lemma 2.2 of [KanamoriPincus] p. 419. (Contributed by Mario Carneiro, 31-May-2015.) |
| Ref | Expression |
|---|---|
| gchxpidm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 4790 |
. . . . . . . 8
| |
| 2 | 1 | a1i 11 |
. . . . . . 7
|
| 3 | xpsneng 8045 |
. . . . . . 7
| |
| 4 | 2, 3 | sylan2 491 |
. . . . . 6
|
| 5 | 4 | ensymd 8007 |
. . . . 5
|
| 6 | df1o2 7572 |
. . . . . . 7
| |
| 7 | id 22 |
. . . . . . . . . . . 12
| |
| 8 | 0fin 8188 |
. . . . . . . . . . . 12
| |
| 9 | 7, 8 | syl6eqel 2709 |
. . . . . . . . . . 11
|
| 10 | 9 | necon3bi 2820 |
. . . . . . . . . 10
|
| 11 | 10 | adantl 482 |
. . . . . . . . 9
|
| 12 | 0sdomg 8089 |
. . . . . . . . . 10
| |
| 13 | 12 | adantr 481 |
. . . . . . . . 9
|
| 14 | 11, 13 | mpbird 247 |
. . . . . . . 8
|
| 15 | 0sdom1dom 8158 |
. . . . . . . 8
| |
| 16 | 14, 15 | sylib 208 |
. . . . . . 7
|
| 17 | 6, 16 | syl5eqbrr 4689 |
. . . . . 6
|
| 18 | xpdom2g 8056 |
. . . . . 6
| |
| 19 | 17, 18 | syldan 487 |
. . . . 5
|
| 20 | endomtr 8014 |
. . . . 5
| |
| 21 | 5, 19, 20 | syl2anc 693 |
. . . 4
|
| 22 | canth2g 8114 |
. . . . . . . . . 10
| |
| 23 | 22 | adantr 481 |
. . . . . . . . 9
|
| 24 | sdomdom 7983 |
. . . . . . . . 9
| |
| 25 | 23, 24 | syl 17 |
. . . . . . . 8
|
| 26 | xpdom1g 8057 |
. . . . . . . 8
| |
| 27 | 25, 26 | syldan 487 |
. . . . . . 7
|
| 28 | pwexg 4850 |
. . . . . . . . 9
| |
| 29 | 28 | adantr 481 |
. . . . . . . 8
|
| 30 | xpdom2g 8056 |
. . . . . . . 8
| |
| 31 | 29, 25, 30 | syl2anc 693 |
. . . . . . 7
|
| 32 | domtr 8009 |
. . . . . . 7
| |
| 33 | 27, 31, 32 | syl2anc 693 |
. . . . . 6
|
| 34 | simpl 473 |
. . . . . . . . 9
| |
| 35 | pwcdaen 9007 |
. . . . . . . . 9
| |
| 36 | 34, 35 | syldan 487 |
. . . . . . . 8
|
| 37 | 36 | ensymd 8007 |
. . . . . . 7
|
| 38 | gchcdaidm 9490 |
. . . . . . . 8
| |
| 39 | pwen 8133 |
. . . . . . . 8
| |
| 40 | 38, 39 | syl 17 |
. . . . . . 7
|
| 41 | entr 8008 |
. . . . . . 7
| |
| 42 | 37, 40, 41 | syl2anc 693 |
. . . . . 6
|
| 43 | domentr 8015 |
. . . . . 6
| |
| 44 | 33, 42, 43 | syl2anc 693 |
. . . . 5
|
| 45 | gchinf 9479 |
. . . . . . 7
| |
| 46 | pwxpndom 9488 |
. . . . . . 7
| |
| 47 | 45, 46 | syl 17 |
. . . . . 6
|
| 48 | ensym 8005 |
. . . . . . 7
| |
| 49 | endom 7982 |
. . . . . . 7
| |
| 50 | 48, 49 | syl 17 |
. . . . . 6
|
| 51 | 47, 50 | nsyl 135 |
. . . . 5
|
| 52 | brsdom 7978 |
. . . . 5
| |
| 53 | 44, 51, 52 | sylanbrc 698 |
. . . 4
|
| 54 | 21, 53 | jca 554 |
. . 3
|
| 55 | gchen1 9447 |
. . 3
| |
| 56 | 54, 55 | mpdan 702 |
. 2
|
| 57 | 56 | ensymd 8007 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-supp 7296 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-seqom 7543 df-1o 7560 df-2o 7561 df-oadd 7564 df-omul 7565 df-oexp 7566 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-fsupp 8276 df-oi 8415 df-har 8463 df-cnf 8559 df-card 8765 df-cda 8990 df-fin4 9109 df-gch 9443 |
| This theorem is referenced by: gchhar 9501 |
| Copyright terms: Public domain | W3C validator |