MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gchxpidm Structured version   Visualization version   Unicode version

Theorem gchxpidm 9491
Description: An infinite GCH-set is idempotent under cardinal product. Part of Lemma 2.2 of [KanamoriPincus] p. 419. (Contributed by Mario Carneiro, 31-May-2015.)
Assertion
Ref Expression
gchxpidm  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  ( A  X.  A
)  ~~  A )

Proof of Theorem gchxpidm
StepHypRef Expression
1 0ex 4790 . . . . . . . 8  |-  (/)  e.  _V
21a1i 11 . . . . . . 7  |-  ( -.  A  e.  Fin  ->  (/)  e.  _V )
3 xpsneng 8045 . . . . . . 7  |-  ( ( A  e. GCH  /\  (/)  e.  _V )  ->  ( A  X.  { (/) } )  ~~  A )
42, 3sylan2 491 . . . . . 6  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  ( A  X.  { (/)
} )  ~~  A
)
54ensymd 8007 . . . . 5  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  A  ~~  ( A  X.  { (/) } ) )
6 df1o2 7572 . . . . . . 7  |-  1o  =  { (/) }
7 id 22 . . . . . . . . . . . 12  |-  ( A  =  (/)  ->  A  =  (/) )
8 0fin 8188 . . . . . . . . . . . 12  |-  (/)  e.  Fin
97, 8syl6eqel 2709 . . . . . . . . . . 11  |-  ( A  =  (/)  ->  A  e. 
Fin )
109necon3bi 2820 . . . . . . . . . 10  |-  ( -.  A  e.  Fin  ->  A  =/=  (/) )
1110adantl 482 . . . . . . . . 9  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  A  =/=  (/) )
12 0sdomg 8089 . . . . . . . . . 10  |-  ( A  e. GCH  ->  ( (/)  ~<  A  <->  A  =/=  (/) ) )
1312adantr 481 . . . . . . . . 9  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  ( (/)  ~<  A  <->  A  =/=  (/) ) )
1411, 13mpbird 247 . . . . . . . 8  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  -> 
(/)  ~<  A )
15 0sdom1dom 8158 . . . . . . . 8  |-  ( (/)  ~<  A 
<->  1o  ~<_  A )
1614, 15sylib 208 . . . . . . 7  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  1o  ~<_  A )
176, 16syl5eqbrr 4689 . . . . . 6  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  { (/) }  ~<_  A )
18 xpdom2g 8056 . . . . . 6  |-  ( ( A  e. GCH  /\  { (/)
}  ~<_  A )  -> 
( A  X.  { (/)
} )  ~<_  ( A  X.  A ) )
1917, 18syldan 487 . . . . 5  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  ( A  X.  { (/)
} )  ~<_  ( A  X.  A ) )
20 endomtr 8014 . . . . 5  |-  ( ( A  ~~  ( A  X.  { (/) } )  /\  ( A  X.  { (/) } )  ~<_  ( A  X.  A ) )  ->  A  ~<_  ( A  X.  A ) )
215, 19, 20syl2anc 693 . . . 4  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  A  ~<_  ( A  X.  A ) )
22 canth2g 8114 . . . . . . . . . 10  |-  ( A  e. GCH  ->  A  ~<  ~P A
)
2322adantr 481 . . . . . . . . 9  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  A  ~<  ~P A
)
24 sdomdom 7983 . . . . . . . . 9  |-  ( A 
~<  ~P A  ->  A  ~<_  ~P A )
2523, 24syl 17 . . . . . . . 8  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  A  ~<_  ~P A )
26 xpdom1g 8057 . . . . . . . 8  |-  ( ( A  e. GCH  /\  A  ~<_  ~P A )  ->  ( A  X.  A )  ~<_  ( ~P A  X.  A
) )
2725, 26syldan 487 . . . . . . 7  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  ( A  X.  A
)  ~<_  ( ~P A  X.  A ) )
28 pwexg 4850 . . . . . . . . 9  |-  ( A  e. GCH  ->  ~P A  e. 
_V )
2928adantr 481 . . . . . . . 8  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  ~P A  e.  _V )
30 xpdom2g 8056 . . . . . . . 8  |-  ( ( ~P A  e.  _V  /\  A  ~<_  ~P A )  -> 
( ~P A  X.  A )  ~<_  ( ~P A  X.  ~P A
) )
3129, 25, 30syl2anc 693 . . . . . . 7  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  ( ~P A  X.  A )  ~<_  ( ~P A  X.  ~P A
) )
32 domtr 8009 . . . . . . 7  |-  ( ( ( A  X.  A
)  ~<_  ( ~P A  X.  A )  /\  ( ~P A  X.  A
)  ~<_  ( ~P A  X.  ~P A ) )  ->  ( A  X.  A )  ~<_  ( ~P A  X.  ~P A
) )
3327, 31, 32syl2anc 693 . . . . . 6  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  ( A  X.  A
)  ~<_  ( ~P A  X.  ~P A ) )
34 simpl 473 . . . . . . . . 9  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  A  e. GCH )
35 pwcdaen 9007 . . . . . . . . 9  |-  ( ( A  e. GCH  /\  A  e. GCH )  ->  ~P ( A  +c  A )  ~~  ( ~P A  X.  ~P A ) )
3634, 35syldan 487 . . . . . . . 8  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  ~P ( A  +c  A )  ~~  ( ~P A  X.  ~P A
) )
3736ensymd 8007 . . . . . . 7  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  ( ~P A  X.  ~P A )  ~~  ~P ( A  +c  A
) )
38 gchcdaidm 9490 . . . . . . . 8  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  ( A  +c  A
)  ~~  A )
39 pwen 8133 . . . . . . . 8  |-  ( ( A  +c  A ) 
~~  A  ->  ~P ( A  +c  A
)  ~~  ~P A
)
4038, 39syl 17 . . . . . . 7  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  ~P ( A  +c  A )  ~~  ~P A )
41 entr 8008 . . . . . . 7  |-  ( ( ( ~P A  X.  ~P A )  ~~  ~P ( A  +c  A
)  /\  ~P ( A  +c  A )  ~~  ~P A )  ->  ( ~P A  X.  ~P A
)  ~~  ~P A
)
4237, 40, 41syl2anc 693 . . . . . 6  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  ( ~P A  X.  ~P A )  ~~  ~P A )
43 domentr 8015 . . . . . 6  |-  ( ( ( A  X.  A
)  ~<_  ( ~P A  X.  ~P A )  /\  ( ~P A  X.  ~P A )  ~~  ~P A )  ->  ( A  X.  A )  ~<_  ~P A )
4433, 42, 43syl2anc 693 . . . . 5  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  ( A  X.  A
)  ~<_  ~P A )
45 gchinf 9479 . . . . . . 7  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  om  ~<_  A )
46 pwxpndom 9488 . . . . . . 7  |-  ( om  ~<_  A  ->  -.  ~P A  ~<_  ( A  X.  A
) )
4745, 46syl 17 . . . . . 6  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  -.  ~P A  ~<_  ( A  X.  A ) )
48 ensym 8005 . . . . . . 7  |-  ( ( A  X.  A ) 
~~  ~P A  ->  ~P A  ~~  ( A  X.  A ) )
49 endom 7982 . . . . . . 7  |-  ( ~P A  ~~  ( A  X.  A )  ->  ~P A  ~<_  ( A  X.  A ) )
5048, 49syl 17 . . . . . 6  |-  ( ( A  X.  A ) 
~~  ~P A  ->  ~P A  ~<_  ( A  X.  A ) )
5147, 50nsyl 135 . . . . 5  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  -.  ( A  X.  A )  ~~  ~P A )
52 brsdom 7978 . . . . 5  |-  ( ( A  X.  A ) 
~<  ~P A  <->  ( ( A  X.  A )  ~<_  ~P A  /\  -.  ( A  X.  A )  ~~  ~P A ) )
5344, 51, 52sylanbrc 698 . . . 4  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  ( A  X.  A
)  ~<  ~P A )
5421, 53jca 554 . . 3  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  ( A  ~<_  ( A  X.  A )  /\  ( A  X.  A
)  ~<  ~P A ) )
55 gchen1 9447 . . 3  |-  ( ( ( A  e. GCH  /\  -.  A  e.  Fin )  /\  ( A  ~<_  ( A  X.  A )  /\  ( A  X.  A )  ~<  ~P A
) )  ->  A  ~~  ( A  X.  A
) )
5654, 55mpdan 702 . 2  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  A  ~~  ( A  X.  A ) )
5756ensymd 8007 1  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  ( A  X.  A
)  ~~  A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200   (/)c0 3915   ~Pcpw 4158   {csn 4177   class class class wbr 4653    X. cxp 5112  (class class class)co 6650   omcom 7065   1oc1o 7553    ~~ cen 7952    ~<_ cdom 7953    ~< csdm 7954   Fincfn 7955    +c ccda 8989  GCHcgch 9442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-seqom 7543  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-oexp 7566  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-har 8463  df-cnf 8559  df-card 8765  df-cda 8990  df-fin4 9109  df-gch 9443
This theorem is referenced by:  gchhar  9501
  Copyright terms: Public domain W3C validator