![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > con3dimp | Structured version Visualization version Unicode version |
Description: Variant of con3d 148 with importation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
con3dimp.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
con3dimp |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con3dimp.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | con3d 148 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | imp 445 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 386 |
This theorem is referenced by: stoic1a 1697 nelneq 2725 nelneq2 2726 nelss 3664 dtru 4857 sofld 5581 2f1fvneq 6517 card2inf 8460 gchen1 9447 gchen2 9448 bcpasc 13108 fiinfnf1o 13138 hashfn 13164 swrdnd2 13433 swrdccat 13493 nnoddn2prmb 15518 pcprod 15599 lubval 16984 glbval 16997 mplmonmul 19464 regr1lem 21542 blcld 22310 stdbdxmet 22320 itgss 23578 isosctrlem2 24549 isppw2 24841 dchrelbas3 24963 lgsdir 25057 2lgslem2 25120 2lgs 25132 rplogsum 25216 nb3grprlem2 26283 orngsqr 29804 qqhval2lem 30025 qqhf 30030 esumpinfval 30135 bj-dtru 32797 lindsenlbs 33404 poimirlem24 33433 isfldidl 33867 lssat 34303 paddasslem1 35106 lcfrlem21 36852 hdmap10lem 37131 hdmap11lem2 37134 jm2.23 37563 ntrneiel2 38384 ntrneik4w 38398 cncfiooicclem1 40106 fourierdlem81 40404 |
Copyright terms: Public domain | W3C validator |