MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  glbdm Structured version   Visualization version   Unicode version

Theorem glbdm 16992
Description: Domain of the greatest lower bound function of a poset. (Contributed by NM, 6-Sep-2018.)
Hypotheses
Ref Expression
glbfval.b  |-  B  =  ( Base `  K
)
glbfval.l  |-  .<_  =  ( le `  K )
glbfval.g  |-  G  =  ( glb `  K
)
glbfval.p  |-  ( ps  <->  ( A. y  e.  s  x  .<_  y  /\  A. z  e.  B  ( A. y  e.  s  z  .<_  y  ->  z 
.<_  x ) ) )
glbfval.k  |-  ( ph  ->  K  e.  V )
Assertion
Ref Expression
glbdm  |-  ( ph  ->  dom  G  =  {
s  e.  ~P B  |  E! x  e.  B  ps } )
Distinct variable groups:    x, s,
z, B    y, s, K, x, z
Allowed substitution hints:    ph( x, y, z, s)    ps( x, y, z, s)    B( y)    G( x, y, z, s)    .<_ ( x, y, z, s)    V( x, y, z, s)

Proof of Theorem glbdm
StepHypRef Expression
1 glbfval.b . . . 4  |-  B  =  ( Base `  K
)
2 glbfval.l . . . 4  |-  .<_  =  ( le `  K )
3 glbfval.g . . . 4  |-  G  =  ( glb `  K
)
4 glbfval.p . . . 4  |-  ( ps  <->  ( A. y  e.  s  x  .<_  y  /\  A. z  e.  B  ( A. y  e.  s  z  .<_  y  ->  z 
.<_  x ) ) )
5 glbfval.k . . . 4  |-  ( ph  ->  K  e.  V )
61, 2, 3, 4, 5glbfval 16991 . . 3  |-  ( ph  ->  G  =  ( ( s  e.  ~P B  |->  ( iota_ x  e.  B  ps ) )  |`  { s  |  E! x  e.  B  ps } ) )
76dmeqd 5326 . 2  |-  ( ph  ->  dom  G  =  dom  ( ( s  e. 
~P B  |->  ( iota_ x  e.  B  ps )
)  |`  { s  |  E! x  e.  B  ps } ) )
8 riotaex 6615 . . . . 5  |-  ( iota_ x  e.  B  ps )  e.  _V
9 eqid 2622 . . . . 5  |-  ( s  e.  ~P B  |->  (
iota_ x  e.  B  ps ) )  =  ( s  e.  ~P B  |->  ( iota_ x  e.  B  ps ) )
108, 9dmmpti 6023 . . . 4  |-  dom  (
s  e.  ~P B  |->  ( iota_ x  e.  B  ps ) )  =  ~P B
1110ineq2i 3811 . . 3  |-  ( { s  |  E! x  e.  B  ps }  i^i  dom  ( s  e.  ~P B  |->  ( iota_ x  e.  B  ps ) ) )  =  ( { s  |  E! x  e.  B  ps }  i^i  ~P B )
12 dmres 5419 . . 3  |-  dom  (
( s  e.  ~P B  |->  ( iota_ x  e.  B  ps ) )  |`  { s  |  E! x  e.  B  ps } )  =  ( { s  |  E! x  e.  B  ps }  i^i  dom  ( s  e.  ~P B  |->  ( iota_ x  e.  B  ps )
) )
13 dfrab2 3903 . . 3  |-  { s  e.  ~P B  |  E! x  e.  B  ps }  =  ( { s  |  E! x  e.  B  ps }  i^i  ~P B )
1411, 12, 133eqtr4i 2654 . 2  |-  dom  (
( s  e.  ~P B  |->  ( iota_ x  e.  B  ps ) )  |`  { s  |  E! x  e.  B  ps } )  =  {
s  e.  ~P B  |  E! x  e.  B  ps }
157, 14syl6eq 2672 1  |-  ( ph  ->  dom  G  =  {
s  e.  ~P B  |  E! x  e.  B  ps } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   A.wral 2912   E!wreu 2914   {crab 2916    i^i cin 3573   ~Pcpw 4158   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114    |` cres 5116   ` cfv 5888   iota_crio 6610   Basecbs 15857   lecple 15948   glbcglb 16943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-glb 16975
This theorem is referenced by:  glbeldm  16994  xrsclat  29680
  Copyright terms: Public domain W3C validator