MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpidinv Structured version   Visualization version   Unicode version

Theorem grpidinv 17475
Description: A group has a left and right identity element, and every member has a left and right inverse. (Contributed by NM, 14-Oct-2006.) (Revised by AV, 1-Sep-2021.)
Hypotheses
Ref Expression
grpidinv.b  |-  B  =  ( Base `  G
)
grpidinv.p  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
grpidinv  |-  ( G  e.  Grp  ->  E. u  e.  B  A. x  e.  B  ( (
( u  .+  x
)  =  x  /\  ( x  .+  u )  =  x )  /\  E. y  e.  B  ( ( y  .+  x
)  =  u  /\  ( x  .+  y )  =  u ) ) )
Distinct variable groups:    u, G, x, y    u, B, y   
u,  .+ , y
Allowed substitution hints:    B( x)    .+ ( x)

Proof of Theorem grpidinv
StepHypRef Expression
1 grpidinv.b . . 3  |-  B  =  ( Base `  G
)
2 eqid 2622 . . 3  |-  ( 0g
`  G )  =  ( 0g `  G
)
31, 2grpidcl 17450 . 2  |-  ( G  e.  Grp  ->  ( 0g `  G )  e.  B )
4 oveq1 6657 . . . . . . 7  |-  ( u  =  ( 0g `  G )  ->  (
u  .+  x )  =  ( ( 0g
`  G )  .+  x ) )
54eqeq1d 2624 . . . . . 6  |-  ( u  =  ( 0g `  G )  ->  (
( u  .+  x
)  =  x  <->  ( ( 0g `  G )  .+  x )  =  x ) )
6 oveq2 6658 . . . . . . 7  |-  ( u  =  ( 0g `  G )  ->  (
x  .+  u )  =  ( x  .+  ( 0g `  G ) ) )
76eqeq1d 2624 . . . . . 6  |-  ( u  =  ( 0g `  G )  ->  (
( x  .+  u
)  =  x  <->  ( x  .+  ( 0g `  G
) )  =  x ) )
85, 7anbi12d 747 . . . . 5  |-  ( u  =  ( 0g `  G )  ->  (
( ( u  .+  x )  =  x  /\  ( x  .+  u )  =  x )  <->  ( ( ( 0g `  G ) 
.+  x )  =  x  /\  ( x 
.+  ( 0g `  G ) )  =  x ) ) )
9 eqeq2 2633 . . . . . . 7  |-  ( u  =  ( 0g `  G )  ->  (
( y  .+  x
)  =  u  <->  ( y  .+  x )  =  ( 0g `  G ) ) )
10 eqeq2 2633 . . . . . . 7  |-  ( u  =  ( 0g `  G )  ->  (
( x  .+  y
)  =  u  <->  ( x  .+  y )  =  ( 0g `  G ) ) )
119, 10anbi12d 747 . . . . . 6  |-  ( u  =  ( 0g `  G )  ->  (
( ( y  .+  x )  =  u  /\  ( x  .+  y )  =  u )  <->  ( ( y 
.+  x )  =  ( 0g `  G
)  /\  ( x  .+  y )  =  ( 0g `  G ) ) ) )
1211rexbidv 3052 . . . . 5  |-  ( u  =  ( 0g `  G )  ->  ( E. y  e.  B  ( ( y  .+  x )  =  u  /\  ( x  .+  y )  =  u )  <->  E. y  e.  B  ( ( y  .+  x )  =  ( 0g `  G )  /\  ( x  .+  y )  =  ( 0g `  G ) ) ) )
138, 12anbi12d 747 . . . 4  |-  ( u  =  ( 0g `  G )  ->  (
( ( ( u 
.+  x )  =  x  /\  ( x 
.+  u )  =  x )  /\  E. y  e.  B  (
( y  .+  x
)  =  u  /\  ( x  .+  y )  =  u ) )  <-> 
( ( ( ( 0g `  G ) 
.+  x )  =  x  /\  ( x 
.+  ( 0g `  G ) )  =  x )  /\  E. y  e.  B  (
( y  .+  x
)  =  ( 0g
`  G )  /\  ( x  .+  y )  =  ( 0g `  G ) ) ) ) )
1413ralbidv 2986 . . 3  |-  ( u  =  ( 0g `  G )  ->  ( A. x  e.  B  ( ( ( u 
.+  x )  =  x  /\  ( x 
.+  u )  =  x )  /\  E. y  e.  B  (
( y  .+  x
)  =  u  /\  ( x  .+  y )  =  u ) )  <->  A. x  e.  B  ( ( ( ( 0g `  G ) 
.+  x )  =  x  /\  ( x 
.+  ( 0g `  G ) )  =  x )  /\  E. y  e.  B  (
( y  .+  x
)  =  ( 0g
`  G )  /\  ( x  .+  y )  =  ( 0g `  G ) ) ) ) )
1514adantl 482 . 2  |-  ( ( G  e.  Grp  /\  u  =  ( 0g `  G ) )  -> 
( A. x  e.  B  ( ( ( u  .+  x )  =  x  /\  (
x  .+  u )  =  x )  /\  E. y  e.  B  (
( y  .+  x
)  =  u  /\  ( x  .+  y )  =  u ) )  <->  A. x  e.  B  ( ( ( ( 0g `  G ) 
.+  x )  =  x  /\  ( x 
.+  ( 0g `  G ) )  =  x )  /\  E. y  e.  B  (
( y  .+  x
)  =  ( 0g
`  G )  /\  ( x  .+  y )  =  ( 0g `  G ) ) ) ) )
16 grpidinv.p . . . 4  |-  .+  =  ( +g  `  G )
171, 16, 2grpidinv2 17474 . . 3  |-  ( ( G  e.  Grp  /\  x  e.  B )  ->  ( ( ( ( 0g `  G ) 
.+  x )  =  x  /\  ( x 
.+  ( 0g `  G ) )  =  x )  /\  E. y  e.  B  (
( y  .+  x
)  =  ( 0g
`  G )  /\  ( x  .+  y )  =  ( 0g `  G ) ) ) )
1817ralrimiva 2966 . 2  |-  ( G  e.  Grp  ->  A. x  e.  B  ( (
( ( 0g `  G )  .+  x
)  =  x  /\  ( x  .+  ( 0g
`  G ) )  =  x )  /\  E. y  e.  B  ( ( y  .+  x
)  =  ( 0g
`  G )  /\  ( x  .+  y )  =  ( 0g `  G ) ) ) )
193, 15, 18rspcedvd 3317 1  |-  ( G  e.  Grp  ->  E. u  e.  B  A. x  e.  B  ( (
( u  .+  x
)  =  x  /\  ( x  .+  u )  =  x )  /\  E. y  e.  B  ( ( y  .+  x
)  =  u  /\  ( x  .+  y )  =  u ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941   0gc0g 16100   Grpcgrp 17422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator