MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpidval Structured version   Visualization version   Unicode version

Theorem grpidval 17260
Description: The value of the identity element of a group. (Contributed by NM, 20-Aug-2011.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
grpidval.b  |-  B  =  ( Base `  G
)
grpidval.p  |-  .+  =  ( +g  `  G )
grpidval.o  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
grpidval  |-  .0.  =  ( iota e ( e  e.  B  /\  A. x  e.  B  (
( e  .+  x
)  =  x  /\  ( x  .+  e )  =  x ) ) )
Distinct variable groups:    x, e, B    e, G, x
Allowed substitution hints:    .+ ( x, e)    .0. ( x, e)

Proof of Theorem grpidval
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 grpidval.o . 2  |-  .0.  =  ( 0g `  G )
2 fveq2 6191 . . . . . . . 8  |-  ( g  =  G  ->  ( Base `  g )  =  ( Base `  G
) )
3 grpidval.b . . . . . . . 8  |-  B  =  ( Base `  G
)
42, 3syl6eqr 2674 . . . . . . 7  |-  ( g  =  G  ->  ( Base `  g )  =  B )
54eleq2d 2687 . . . . . 6  |-  ( g  =  G  ->  (
e  e.  ( Base `  g )  <->  e  e.  B ) )
6 fveq2 6191 . . . . . . . . . . 11  |-  ( g  =  G  ->  ( +g  `  g )  =  ( +g  `  G
) )
7 grpidval.p . . . . . . . . . . 11  |-  .+  =  ( +g  `  G )
86, 7syl6eqr 2674 . . . . . . . . . 10  |-  ( g  =  G  ->  ( +g  `  g )  = 
.+  )
98oveqd 6667 . . . . . . . . 9  |-  ( g  =  G  ->  (
e ( +g  `  g
) x )  =  ( e  .+  x
) )
109eqeq1d 2624 . . . . . . . 8  |-  ( g  =  G  ->  (
( e ( +g  `  g ) x )  =  x  <->  ( e  .+  x )  =  x ) )
118oveqd 6667 . . . . . . . . 9  |-  ( g  =  G  ->  (
x ( +g  `  g
) e )  =  ( x  .+  e
) )
1211eqeq1d 2624 . . . . . . . 8  |-  ( g  =  G  ->  (
( x ( +g  `  g ) e )  =  x  <->  ( x  .+  e )  =  x ) )
1310, 12anbi12d 747 . . . . . . 7  |-  ( g  =  G  ->  (
( ( e ( +g  `  g ) x )  =  x  /\  ( x ( +g  `  g ) e )  =  x )  <->  ( ( e 
.+  x )  =  x  /\  ( x 
.+  e )  =  x ) ) )
144, 13raleqbidv 3152 . . . . . 6  |-  ( g  =  G  ->  ( A. x  e.  ( Base `  g ) ( ( e ( +g  `  g ) x )  =  x  /\  (
x ( +g  `  g
) e )  =  x )  <->  A. x  e.  B  ( (
e  .+  x )  =  x  /\  (
x  .+  e )  =  x ) ) )
155, 14anbi12d 747 . . . . 5  |-  ( g  =  G  ->  (
( e  e.  (
Base `  g )  /\  A. x  e.  (
Base `  g )
( ( e ( +g  `  g ) x )  =  x  /\  ( x ( +g  `  g ) e )  =  x ) )  <->  ( e  e.  B  /\  A. x  e.  B  ( (
e  .+  x )  =  x  /\  (
x  .+  e )  =  x ) ) ) )
1615iotabidv 5872 . . . 4  |-  ( g  =  G  ->  ( iota e ( e  e.  ( Base `  g
)  /\  A. x  e.  ( Base `  g
) ( ( e ( +g  `  g
) x )  =  x  /\  ( x ( +g  `  g
) e )  =  x ) ) )  =  ( iota e
( e  e.  B  /\  A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x ) ) ) )
17 df-0g 16102 . . . 4  |-  0g  =  ( g  e.  _V  |->  ( iota e ( e  e.  ( Base `  g
)  /\  A. x  e.  ( Base `  g
) ( ( e ( +g  `  g
) x )  =  x  /\  ( x ( +g  `  g
) e )  =  x ) ) ) )
18 iotaex 5868 . . . 4  |-  ( iota e ( e  e.  B  /\  A. x  e.  B  ( (
e  .+  x )  =  x  /\  (
x  .+  e )  =  x ) ) )  e.  _V
1916, 17, 18fvmpt 6282 . . 3  |-  ( G  e.  _V  ->  ( 0g `  G )  =  ( iota e ( e  e.  B  /\  A. x  e.  B  ( ( e  .+  x
)  =  x  /\  ( x  .+  e )  =  x ) ) ) )
20 fvprc 6185 . . . 4  |-  ( -.  G  e.  _V  ->  ( 0g `  G )  =  (/) )
21 euex 2494 . . . . . . 7  |-  ( E! e ( e  e.  B  /\  A. x  e.  B  ( (
e  .+  x )  =  x  /\  (
x  .+  e )  =  x ) )  ->  E. e ( e  e.  B  /\  A. x  e.  B  ( (
e  .+  x )  =  x  /\  (
x  .+  e )  =  x ) ) )
22 n0i 3920 . . . . . . . . . 10  |-  ( e  e.  B  ->  -.  B  =  (/) )
23 fvprc 6185 . . . . . . . . . . 11  |-  ( -.  G  e.  _V  ->  (
Base `  G )  =  (/) )
243, 23syl5eq 2668 . . . . . . . . . 10  |-  ( -.  G  e.  _V  ->  B  =  (/) )
2522, 24nsyl2 142 . . . . . . . . 9  |-  ( e  e.  B  ->  G  e.  _V )
2625adantr 481 . . . . . . . 8  |-  ( ( e  e.  B  /\  A. x  e.  B  ( ( e  .+  x
)  =  x  /\  ( x  .+  e )  =  x ) )  ->  G  e.  _V )
2726exlimiv 1858 . . . . . . 7  |-  ( E. e ( e  e.  B  /\  A. x  e.  B  ( (
e  .+  x )  =  x  /\  (
x  .+  e )  =  x ) )  ->  G  e.  _V )
2821, 27syl 17 . . . . . 6  |-  ( E! e ( e  e.  B  /\  A. x  e.  B  ( (
e  .+  x )  =  x  /\  (
x  .+  e )  =  x ) )  ->  G  e.  _V )
2928con3i 150 . . . . 5  |-  ( -.  G  e.  _V  ->  -.  E! e ( e  e.  B  /\  A. x  e.  B  (
( e  .+  x
)  =  x  /\  ( x  .+  e )  =  x ) ) )
30 iotanul 5866 . . . . 5  |-  ( -.  E! e ( e  e.  B  /\  A. x  e.  B  (
( e  .+  x
)  =  x  /\  ( x  .+  e )  =  x ) )  ->  ( iota e
( e  e.  B  /\  A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x ) ) )  =  (/) )
3129, 30syl 17 . . . 4  |-  ( -.  G  e.  _V  ->  ( iota e ( e  e.  B  /\  A. x  e.  B  (
( e  .+  x
)  =  x  /\  ( x  .+  e )  =  x ) ) )  =  (/) )
3220, 31eqtr4d 2659 . . 3  |-  ( -.  G  e.  _V  ->  ( 0g `  G )  =  ( iota e
( e  e.  B  /\  A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x ) ) ) )
3319, 32pm2.61i 176 . 2  |-  ( 0g
`  G )  =  ( iota e ( e  e.  B  /\  A. x  e.  B  ( ( e  .+  x
)  =  x  /\  ( x  .+  e )  =  x ) ) )
341, 33eqtri 2644 1  |-  .0.  =  ( iota e ( e  e.  B  /\  A. x  e.  B  (
( e  .+  x
)  =  x  /\  ( x  .+  e )  =  x ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   E!weu 2470   A.wral 2912   _Vcvv 3200   (/)c0 3915   iotacio 5849   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941   0gc0g 16100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-0g 16102
This theorem is referenced by:  grpidpropd  17261  0g0  17263  ismgmid  17264  oppgid  17786  dfur2  18504  oppr0  18633  oppr1  18634
  Copyright terms: Public domain W3C validator