| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpidval | Structured version Visualization version Unicode version | ||
| Description: The value of the identity element of a group. (Contributed by NM, 20-Aug-2011.) (Revised by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| grpidval.b |
|
| grpidval.p |
|
| grpidval.o |
|
| Ref | Expression |
|---|---|
| grpidval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpidval.o |
. 2
| |
| 2 | fveq2 6191 |
. . . . . . . 8
| |
| 3 | grpidval.b |
. . . . . . . 8
| |
| 4 | 2, 3 | syl6eqr 2674 |
. . . . . . 7
|
| 5 | 4 | eleq2d 2687 |
. . . . . 6
|
| 6 | fveq2 6191 |
. . . . . . . . . . 11
| |
| 7 | grpidval.p |
. . . . . . . . . . 11
| |
| 8 | 6, 7 | syl6eqr 2674 |
. . . . . . . . . 10
|
| 9 | 8 | oveqd 6667 |
. . . . . . . . 9
|
| 10 | 9 | eqeq1d 2624 |
. . . . . . . 8
|
| 11 | 8 | oveqd 6667 |
. . . . . . . . 9
|
| 12 | 11 | eqeq1d 2624 |
. . . . . . . 8
|
| 13 | 10, 12 | anbi12d 747 |
. . . . . . 7
|
| 14 | 4, 13 | raleqbidv 3152 |
. . . . . 6
|
| 15 | 5, 14 | anbi12d 747 |
. . . . 5
|
| 16 | 15 | iotabidv 5872 |
. . . 4
|
| 17 | df-0g 16102 |
. . . 4
| |
| 18 | iotaex 5868 |
. . . 4
| |
| 19 | 16, 17, 18 | fvmpt 6282 |
. . 3
|
| 20 | fvprc 6185 |
. . . 4
| |
| 21 | euex 2494 |
. . . . . . 7
| |
| 22 | n0i 3920 |
. . . . . . . . . 10
| |
| 23 | fvprc 6185 |
. . . . . . . . . . 11
| |
| 24 | 3, 23 | syl5eq 2668 |
. . . . . . . . . 10
|
| 25 | 22, 24 | nsyl2 142 |
. . . . . . . . 9
|
| 26 | 25 | adantr 481 |
. . . . . . . 8
|
| 27 | 26 | exlimiv 1858 |
. . . . . . 7
|
| 28 | 21, 27 | syl 17 |
. . . . . 6
|
| 29 | 28 | con3i 150 |
. . . . 5
|
| 30 | iotanul 5866 |
. . . . 5
| |
| 31 | 29, 30 | syl 17 |
. . . 4
|
| 32 | 20, 31 | eqtr4d 2659 |
. . 3
|
| 33 | 19, 32 | pm2.61i 176 |
. 2
|
| 34 | 1, 33 | eqtri 2644 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-0g 16102 |
| This theorem is referenced by: grpidpropd 17261 0g0 17263 ismgmid 17264 oppgid 17786 dfur2 18504 oppr0 18633 oppr1 18634 |
| Copyright terms: Public domain | W3C validator |