| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpidpropd | Structured version Visualization version Unicode version | ||
| Description: If two structures have the same base set, and the values of their group (addition) operations are equal for all pairs of elements of the base set, they have the same identity element. (Contributed by Mario Carneiro, 27-Nov-2014.) |
| Ref | Expression |
|---|---|
| grpidpropd.1 |
|
| grpidpropd.2 |
|
| grpidpropd.3 |
|
| Ref | Expression |
|---|---|
| grpidpropd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpidpropd.3 |
. . . . . . . . 9
| |
| 2 | 1 | eqeq1d 2624 |
. . . . . . . 8
|
| 3 | 1 | oveqrspc2v 6673 |
. . . . . . . . . . 11
|
| 4 | 3 | oveqrspc2v 6673 |
. . . . . . . . . 10
|
| 5 | 4 | ancom2s 844 |
. . . . . . . . 9
|
| 6 | 5 | eqeq1d 2624 |
. . . . . . . 8
|
| 7 | 2, 6 | anbi12d 747 |
. . . . . . 7
|
| 8 | 7 | anassrs 680 |
. . . . . 6
|
| 9 | 8 | ralbidva 2985 |
. . . . 5
|
| 10 | 9 | pm5.32da 673 |
. . . 4
|
| 11 | grpidpropd.1 |
. . . . . 6
| |
| 12 | 11 | eleq2d 2687 |
. . . . 5
|
| 13 | 11 | raleqdv 3144 |
. . . . 5
|
| 14 | 12, 13 | anbi12d 747 |
. . . 4
|
| 15 | grpidpropd.2 |
. . . . . 6
| |
| 16 | 15 | eleq2d 2687 |
. . . . 5
|
| 17 | 15 | raleqdv 3144 |
. . . . 5
|
| 18 | 16, 17 | anbi12d 747 |
. . . 4
|
| 19 | 10, 14, 18 | 3bitr3d 298 |
. . 3
|
| 20 | 19 | iotabidv 5872 |
. 2
|
| 21 | eqid 2622 |
. . 3
| |
| 22 | eqid 2622 |
. . 3
| |
| 23 | eqid 2622 |
. . 3
| |
| 24 | 21, 22, 23 | grpidval 17260 |
. 2
|
| 25 | eqid 2622 |
. . 3
| |
| 26 | eqid 2622 |
. . 3
| |
| 27 | eqid 2622 |
. . 3
| |
| 28 | 25, 26, 27 | grpidval 17260 |
. 2
|
| 29 | 20, 24, 28 | 3eqtr4g 2681 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-0g 16102 |
| This theorem is referenced by: gsumpropd 17272 gsumpropd2lem 17273 mhmpropd 17341 grppropd 17437 grpinvpropd 17490 mulgpropd 17584 prds1 18614 rngidpropd 18695 drngprop 18758 drngpropd 18774 abvpropd 18842 lbspropd 19099 sralmod0 19188 opsr0 19588 mplbaspropd 19607 ply1mpl0 19625 phlpropd 20000 mat0 20223 nmpropd 22398 nmpropd2 22399 tng0 22447 mdegpropd 23844 ply1divalg2 23898 resv0g 29836 zlm0 30006 hlhils0 37237 hlhil0 37247 |
| Copyright terms: Public domain | W3C validator |