MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinvfval Structured version   Visualization version   Unicode version

Theorem grpinvfval 17460
Description: The inverse function of a group. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 7-Aug-2013.)
Hypotheses
Ref Expression
grpinvval.b  |-  B  =  ( Base `  G
)
grpinvval.p  |-  .+  =  ( +g  `  G )
grpinvval.o  |-  .0.  =  ( 0g `  G )
grpinvval.n  |-  N  =  ( invg `  G )
Assertion
Ref Expression
grpinvfval  |-  N  =  ( x  e.  B  |->  ( iota_ y  e.  B  ( y  .+  x
)  =  .0.  )
)
Distinct variable groups:    x, y, B    x, G, y    x,  .0.    x,  .+
Allowed substitution hints:    .+ ( y)    N( x, y)    .0. ( y)

Proof of Theorem grpinvfval
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 grpinvval.n . 2  |-  N  =  ( invg `  G )
2 fveq2 6191 . . . . . 6  |-  ( g  =  G  ->  ( Base `  g )  =  ( Base `  G
) )
3 grpinvval.b . . . . . 6  |-  B  =  ( Base `  G
)
42, 3syl6eqr 2674 . . . . 5  |-  ( g  =  G  ->  ( Base `  g )  =  B )
5 fveq2 6191 . . . . . . . . 9  |-  ( g  =  G  ->  ( +g  `  g )  =  ( +g  `  G
) )
6 grpinvval.p . . . . . . . . 9  |-  .+  =  ( +g  `  G )
75, 6syl6eqr 2674 . . . . . . . 8  |-  ( g  =  G  ->  ( +g  `  g )  = 
.+  )
87oveqd 6667 . . . . . . 7  |-  ( g  =  G  ->  (
y ( +g  `  g
) x )  =  ( y  .+  x
) )
9 fveq2 6191 . . . . . . . 8  |-  ( g  =  G  ->  ( 0g `  g )  =  ( 0g `  G
) )
10 grpinvval.o . . . . . . . 8  |-  .0.  =  ( 0g `  G )
119, 10syl6eqr 2674 . . . . . . 7  |-  ( g  =  G  ->  ( 0g `  g )  =  .0.  )
128, 11eqeq12d 2637 . . . . . 6  |-  ( g  =  G  ->  (
( y ( +g  `  g ) x )  =  ( 0g `  g )  <->  ( y  .+  x )  =  .0.  ) )
134, 12riotaeqbidv 6614 . . . . 5  |-  ( g  =  G  ->  ( iota_ y  e.  ( Base `  g ) ( y ( +g  `  g
) x )  =  ( 0g `  g
) )  =  (
iota_ y  e.  B  ( y  .+  x
)  =  .0.  )
)
144, 13mpteq12dv 4733 . . . 4  |-  ( g  =  G  ->  (
x  e.  ( Base `  g )  |->  ( iota_ y  e.  ( Base `  g
) ( y ( +g  `  g ) x )  =  ( 0g `  g ) ) )  =  ( x  e.  B  |->  (
iota_ y  e.  B  ( y  .+  x
)  =  .0.  )
) )
15 df-minusg 17426 . . . 4  |-  invg 
=  ( g  e. 
_V  |->  ( x  e.  ( Base `  g
)  |->  ( iota_ y  e.  ( Base `  g
) ( y ( +g  `  g ) x )  =  ( 0g `  g ) ) ) )
16 fvex 6201 . . . . . 6  |-  ( Base `  G )  e.  _V
173, 16eqeltri 2697 . . . . 5  |-  B  e. 
_V
1817mptex 6486 . . . 4  |-  ( x  e.  B  |->  ( iota_ y  e.  B  ( y 
.+  x )  =  .0.  ) )  e. 
_V
1914, 15, 18fvmpt 6282 . . 3  |-  ( G  e.  _V  ->  ( invg `  G )  =  ( x  e.  B  |->  ( iota_ y  e.  B  ( y  .+  x )  =  .0.  ) ) )
20 fvprc 6185 . . . . 5  |-  ( -.  G  e.  _V  ->  ( invg `  G
)  =  (/) )
21 mpt0 6021 . . . . 5  |-  ( x  e.  (/)  |->  ( iota_ y  e.  B  ( y  .+  x )  =  .0.  ) )  =  (/)
2220, 21syl6eqr 2674 . . . 4  |-  ( -.  G  e.  _V  ->  ( invg `  G
)  =  ( x  e.  (/)  |->  ( iota_ y  e.  B  ( y  .+  x )  =  .0.  ) ) )
23 fvprc 6185 . . . . . 6  |-  ( -.  G  e.  _V  ->  (
Base `  G )  =  (/) )
243, 23syl5eq 2668 . . . . 5  |-  ( -.  G  e.  _V  ->  B  =  (/) )
2524mpteq1d 4738 . . . 4  |-  ( -.  G  e.  _V  ->  ( x  e.  B  |->  (
iota_ y  e.  B  ( y  .+  x
)  =  .0.  )
)  =  ( x  e.  (/)  |->  ( iota_ y  e.  B  ( y  .+  x )  =  .0.  ) ) )
2622, 25eqtr4d 2659 . . 3  |-  ( -.  G  e.  _V  ->  ( invg `  G
)  =  ( x  e.  B  |->  ( iota_ y  e.  B  ( y 
.+  x )  =  .0.  ) ) )
2719, 26pm2.61i 176 . 2  |-  ( invg `  G )  =  ( x  e.  B  |->  ( iota_ y  e.  B  ( y  .+  x )  =  .0.  ) )
281, 27eqtri 2644 1  |-  N  =  ( x  e.  B  |->  ( iota_ y  e.  B  ( y  .+  x
)  =  .0.  )
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    = wceq 1483    e. wcel 1990   _Vcvv 3200   (/)c0 3915    |-> cmpt 4729   ` cfv 5888   iota_crio 6610  (class class class)co 6650   Basecbs 15857   +g cplusg 15941   0gc0g 16100   invgcminusg 17423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-minusg 17426
This theorem is referenced by:  grpinvval  17461  grpinvfn  17462  grpinvf  17466  grpinvpropd  17490  opprneg  18635
  Copyright terms: Public domain W3C validator