MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinvnz Structured version   Visualization version   Unicode version

Theorem grpinvnz 17486
Description: The inverse of a nonzero group element is not zero. (Contributed by Stefan O'Rear, 27-Feb-2015.)
Hypotheses
Ref Expression
grpinvnzcl.b  |-  B  =  ( Base `  G
)
grpinvnzcl.z  |-  .0.  =  ( 0g `  G )
grpinvnzcl.n  |-  N  =  ( invg `  G )
Assertion
Ref Expression
grpinvnz  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  X  =/=  .0.  )  -> 
( N `  X
)  =/=  .0.  )

Proof of Theorem grpinvnz
StepHypRef Expression
1 fveq2 6191 . . . . . 6  |-  ( ( N `  X )  =  .0.  ->  ( N `  ( N `  X ) )  =  ( N `  .0.  ) )
21adantl 482 . . . . 5  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  ( N `  X )  =  .0.  )  ->  ( N `  ( N `  X
) )  =  ( N `  .0.  )
)
3 grpinvnzcl.b . . . . . . 7  |-  B  =  ( Base `  G
)
4 grpinvnzcl.n . . . . . . 7  |-  N  =  ( invg `  G )
53, 4grpinvinv 17482 . . . . . 6  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( N `  ( N `  X )
)  =  X )
65adantr 481 . . . . 5  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  ( N `  X )  =  .0.  )  ->  ( N `  ( N `  X
) )  =  X )
7 grpinvnzcl.z . . . . . . 7  |-  .0.  =  ( 0g `  G )
87, 4grpinvid 17476 . . . . . 6  |-  ( G  e.  Grp  ->  ( N `  .0.  )  =  .0.  )
98ad2antrr 762 . . . . 5  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  ( N `  X )  =  .0.  )  ->  ( N `  .0.  )  =  .0.  )
102, 6, 93eqtr3d 2664 . . . 4  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  ( N `  X )  =  .0.  )  ->  X  =  .0.  )
1110ex 450 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( ( N `  X )  =  .0. 
->  X  =  .0.  ) )
1211necon3d 2815 . 2  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( X  =/=  .0.  ->  ( N `  X
)  =/=  .0.  )
)
13123impia 1261 1  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  X  =/=  .0.  )  -> 
( N `  X
)  =/=  .0.  )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   ` cfv 5888   Basecbs 15857   0gc0g 16100   Grpcgrp 17422   invgcminusg 17423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426
This theorem is referenced by:  grpinvnzcl  17487
  Copyright terms: Public domain W3C validator