MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpoinvid1 Structured version   Visualization version   Unicode version

Theorem grpoinvid1 27382
Description: The inverse of a group element expressed in terms of the identity element. (Contributed by NM, 27-Oct-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpinv.1  |-  X  =  ran  G
grpinv.2  |-  U  =  (GId `  G )
grpinv.3  |-  N  =  ( inv `  G
)
Assertion
Ref Expression
grpoinvid1  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  (
( N `  A
)  =  B  <->  ( A G B )  =  U ) )

Proof of Theorem grpoinvid1
StepHypRef Expression
1 oveq2 6658 . . . 4  |-  ( ( N `  A )  =  B  ->  ( A G ( N `  A ) )  =  ( A G B ) )
21adantl 482 . . 3  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  /\  ( N `  A
)  =  B )  ->  ( A G ( N `  A
) )  =  ( A G B ) )
3 grpinv.1 . . . . . 6  |-  X  =  ran  G
4 grpinv.2 . . . . . 6  |-  U  =  (GId `  G )
5 grpinv.3 . . . . . 6  |-  N  =  ( inv `  G
)
63, 4, 5grporinv 27381 . . . . 5  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  ( A G ( N `  A ) )  =  U )
763adant3 1081 . . . 4  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  ( A G ( N `  A ) )  =  U )
87adantr 481 . . 3  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  /\  ( N `  A
)  =  B )  ->  ( A G ( N `  A
) )  =  U )
92, 8eqtr3d 2658 . 2  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  /\  ( N `  A
)  =  B )  ->  ( A G B )  =  U )
10 oveq2 6658 . . . 4  |-  ( ( A G B )  =  U  ->  (
( N `  A
) G ( A G B ) )  =  ( ( N `
 A ) G U ) )
1110adantl 482 . . 3  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  /\  ( A G B )  =  U )  ->  ( ( N `
 A ) G ( A G B ) )  =  ( ( N `  A
) G U ) )
123, 4, 5grpolinv 27380 . . . . . . . 8  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  (
( N `  A
) G A )  =  U )
1312oveq1d 6665 . . . . . . 7  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  (
( ( N `  A ) G A ) G B )  =  ( U G B ) )
14133adant3 1081 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  (
( ( N `  A ) G A ) G B )  =  ( U G B ) )
153, 5grpoinvcl 27378 . . . . . . . . . 10  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  ( N `  A )  e.  X )
1615adantrr 753 . . . . . . . . 9  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X )
)  ->  ( N `  A )  e.  X
)
17 simprl 794 . . . . . . . . 9  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X )
)  ->  A  e.  X )
18 simprr 796 . . . . . . . . 9  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X )
)  ->  B  e.  X )
1916, 17, 183jca 1242 . . . . . . . 8  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X )
)  ->  ( ( N `  A )  e.  X  /\  A  e.  X  /\  B  e.  X ) )
203grpoass 27357 . . . . . . . 8  |-  ( ( G  e.  GrpOp  /\  (
( N `  A
)  e.  X  /\  A  e.  X  /\  B  e.  X )
)  ->  ( (
( N `  A
) G A ) G B )  =  ( ( N `  A ) G ( A G B ) ) )
2119, 20syldan 487 . . . . . . 7  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X )
)  ->  ( (
( N `  A
) G A ) G B )  =  ( ( N `  A ) G ( A G B ) ) )
22213impb 1260 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  (
( ( N `  A ) G A ) G B )  =  ( ( N `
 A ) G ( A G B ) ) )
2314, 22eqtr3d 2658 . . . . 5  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  ( U G B )  =  ( ( N `  A ) G ( A G B ) ) )
243, 4grpolid 27370 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  B  e.  X )  ->  ( U G B )  =  B )
25243adant2 1080 . . . . 5  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  ( U G B )  =  B )
2623, 25eqtr3d 2658 . . . 4  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  (
( N `  A
) G ( A G B ) )  =  B )
2726adantr 481 . . 3  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  /\  ( A G B )  =  U )  ->  ( ( N `
 A ) G ( A G B ) )  =  B )
283, 4grporid 27371 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  ( N `  A )  e.  X )  ->  (
( N `  A
) G U )  =  ( N `  A ) )
2915, 28syldan 487 . . . . 5  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  (
( N `  A
) G U )  =  ( N `  A ) )
30293adant3 1081 . . . 4  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  (
( N `  A
) G U )  =  ( N `  A ) )
3130adantr 481 . . 3  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  /\  ( A G B )  =  U )  ->  ( ( N `
 A ) G U )  =  ( N `  A ) )
3211, 27, 313eqtr3rd 2665 . 2  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  /\  ( A G B )  =  U )  ->  ( N `  A )  =  B )
339, 32impbida 877 1  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  (
( N `  A
)  =  B  <->  ( A G B )  =  U ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   ran crn 5115   ` cfv 5888  (class class class)co 6650   GrpOpcgr 27343  GIdcgi 27344   invcgn 27345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-grpo 27347  df-gid 27348  df-ginv 27349
This theorem is referenced by:  grpoinvop  27387  rngonegmn1l  33740
  Copyright terms: Public domain W3C validator