MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grporn Structured version   Visualization version   Unicode version

Theorem grporn 27375
Description: The range of a group operation. Useful for satisfying group base set hypotheses of the form  X  =  ran  G. (Contributed by NM, 5-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
grprn.1  |-  G  e. 
GrpOp
grprn.2  |-  dom  G  =  ( X  X.  X )
Assertion
Ref Expression
grporn  |-  X  =  ran  G

Proof of Theorem grporn
StepHypRef Expression
1 grprn.1 . . . 4  |-  G  e. 
GrpOp
2 eqid 2622 . . . . 5  |-  ran  G  =  ran  G
32grpofo 27353 . . . 4  |-  ( G  e.  GrpOp  ->  G :
( ran  G  X.  ran  G ) -onto-> ran  G
)
4 fofun 6116 . . . 4  |-  ( G : ( ran  G  X.  ran  G ) -onto-> ran 
G  ->  Fun  G )
51, 3, 4mp2b 10 . . 3  |-  Fun  G
6 grprn.2 . . 3  |-  dom  G  =  ( X  X.  X )
7 df-fn 5891 . . 3  |-  ( G  Fn  ( X  X.  X )  <->  ( Fun  G  /\  dom  G  =  ( X  X.  X
) ) )
85, 6, 7mpbir2an 955 . 2  |-  G  Fn  ( X  X.  X
)
9 fofn 6117 . . 3  |-  ( G : ( ran  G  X.  ran  G ) -onto-> ran 
G  ->  G  Fn  ( ran  G  X.  ran  G ) )
101, 3, 9mp2b 10 . 2  |-  G  Fn  ( ran  G  X.  ran  G )
11 fndmu 5992 . . 3  |-  ( ( G  Fn  ( X  X.  X )  /\  G  Fn  ( ran  G  X.  ran  G ) )  ->  ( X  X.  X )  =  ( ran  G  X.  ran  G ) )
12 xpid11 5347 . . 3  |-  ( ( X  X.  X )  =  ( ran  G  X.  ran  G )  <->  X  =  ran  G )
1311, 12sylib 208 . 2  |-  ( ( G  Fn  ( X  X.  X )  /\  G  Fn  ( ran  G  X.  ran  G ) )  ->  X  =  ran  G )
148, 10, 13mp2an 708 1  |-  X  =  ran  G
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384    = wceq 1483    e. wcel 1990    X. cxp 5112   dom cdm 5114   ran crn 5115   Fun wfun 5882    Fn wfn 5883   -onto->wfo 5886   GrpOpcgr 27343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fo 5894  df-fv 5896  df-ov 6653  df-grpo 27347
This theorem is referenced by:  isabloi  27405  isvciOLD  27435  cnidOLD  27437  cnnv  27532  cnnvba  27534  cncph  27674  hilid  28018  hhnv  28022  hhba  28024  hhph  28035  hhssnv  28121
  Copyright terms: Public domain W3C validator