MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isvciOLD Structured version   Visualization version   Unicode version

Theorem isvciOLD 27435
Description: Properties that determine a complex vector space. (Contributed by NM, 5-Nov-2006.) Obsolete as of 4-Oct-2021. Use iscvsi 22929 instead. (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
isvciOLD.1  |-  G  e. 
AbelOp
isvciOLD.2  |-  dom  G  =  ( X  X.  X )
isvciOLD.3  |-  S :
( CC  X.  X
) --> X
isvciOLD.4  |-  ( x  e.  X  ->  (
1 S x )  =  x )
isvciOLD.5  |-  ( ( y  e.  CC  /\  x  e.  X  /\  z  e.  X )  ->  ( y S ( x G z ) )  =  ( ( y S x ) G ( y S z ) ) )
isvciOLD.6  |-  ( ( y  e.  CC  /\  z  e.  CC  /\  x  e.  X )  ->  (
( y  +  z ) S x )  =  ( ( y S x ) G ( z S x ) ) )
isvciOLD.7  |-  ( ( y  e.  CC  /\  z  e.  CC  /\  x  e.  X )  ->  (
( y  x.  z
) S x )  =  ( y S ( z S x ) ) )
isvciOLD.8  |-  W  = 
<. G ,  S >.
Assertion
Ref Expression
isvciOLD  |-  W  e. 
CVecOLD
Distinct variable groups:    x, y,
z, G    x, S, y, z    x, X, y, z
Allowed substitution hints:    W( x, y, z)

Proof of Theorem isvciOLD
StepHypRef Expression
1 isvciOLD.8 . 2  |-  W  = 
<. G ,  S >.
2 isvciOLD.1 . . 3  |-  G  e. 
AbelOp
3 isvciOLD.3 . . 3  |-  S :
( CC  X.  X
) --> X
4 isvciOLD.4 . . . . 5  |-  ( x  e.  X  ->  (
1 S x )  =  x )
5 isvciOLD.5 . . . . . . . . . 10  |-  ( ( y  e.  CC  /\  x  e.  X  /\  z  e.  X )  ->  ( y S ( x G z ) )  =  ( ( y S x ) G ( y S z ) ) )
653com12 1269 . . . . . . . . 9  |-  ( ( x  e.  X  /\  y  e.  CC  /\  z  e.  X )  ->  (
y S ( x G z ) )  =  ( ( y S x ) G ( y S z ) ) )
763expa 1265 . . . . . . . 8  |-  ( ( ( x  e.  X  /\  y  e.  CC )  /\  z  e.  X
)  ->  ( y S ( x G z ) )  =  ( ( y S x ) G ( y S z ) ) )
87ralrimiva 2966 . . . . . . 7  |-  ( ( x  e.  X  /\  y  e.  CC )  ->  A. z  e.  X  ( y S ( x G z ) )  =  ( ( y S x ) G ( y S z ) ) )
9 isvciOLD.6 . . . . . . . . . . 11  |-  ( ( y  e.  CC  /\  z  e.  CC  /\  x  e.  X )  ->  (
( y  +  z ) S x )  =  ( ( y S x ) G ( z S x ) ) )
10 isvciOLD.7 . . . . . . . . . . 11  |-  ( ( y  e.  CC  /\  z  e.  CC  /\  x  e.  X )  ->  (
( y  x.  z
) S x )  =  ( y S ( z S x ) ) )
119, 10jca 554 . . . . . . . . . 10  |-  ( ( y  e.  CC  /\  z  e.  CC  /\  x  e.  X )  ->  (
( ( y  +  z ) S x )  =  ( ( y S x ) G ( z S x ) )  /\  ( ( y  x.  z ) S x )  =  ( y S ( z S x ) ) ) )
12113comr 1273 . . . . . . . . 9  |-  ( ( x  e.  X  /\  y  e.  CC  /\  z  e.  CC )  ->  (
( ( y  +  z ) S x )  =  ( ( y S x ) G ( z S x ) )  /\  ( ( y  x.  z ) S x )  =  ( y S ( z S x ) ) ) )
13123expa 1265 . . . . . . . 8  |-  ( ( ( x  e.  X  /\  y  e.  CC )  /\  z  e.  CC )  ->  ( ( ( y  +  z ) S x )  =  ( ( y S x ) G ( z S x ) )  /\  ( ( y  x.  z ) S x )  =  ( y S ( z S x ) ) ) )
1413ralrimiva 2966 . . . . . . 7  |-  ( ( x  e.  X  /\  y  e.  CC )  ->  A. z  e.  CC  ( ( ( y  +  z ) S x )  =  ( ( y S x ) G ( z S x ) )  /\  ( ( y  x.  z ) S x )  =  ( y S ( z S x ) ) ) )
158, 14jca 554 . . . . . 6  |-  ( ( x  e.  X  /\  y  e.  CC )  ->  ( A. z  e.  X  ( y S ( x G z ) )  =  ( ( y S x ) G ( y S z ) )  /\  A. z  e.  CC  ( ( ( y  +  z ) S x )  =  ( ( y S x ) G ( z S x ) )  /\  ( ( y  x.  z ) S x )  =  ( y S ( z S x ) ) ) ) )
1615ralrimiva 2966 . . . . 5  |-  ( x  e.  X  ->  A. y  e.  CC  ( A. z  e.  X  ( y S ( x G z ) )  =  ( ( y S x ) G ( y S z ) )  /\  A. z  e.  CC  ( ( ( y  +  z ) S x )  =  ( ( y S x ) G ( z S x ) )  /\  ( ( y  x.  z ) S x )  =  ( y S ( z S x ) ) ) ) )
174, 16jca 554 . . . 4  |-  ( x  e.  X  ->  (
( 1 S x )  =  x  /\  A. y  e.  CC  ( A. z  e.  X  ( y S ( x G z ) )  =  ( ( y S x ) G ( y S z ) )  /\  A. z  e.  CC  (
( ( y  +  z ) S x )  =  ( ( y S x ) G ( z S x ) )  /\  ( ( y  x.  z ) S x )  =  ( y S ( z S x ) ) ) ) ) )
1817rgen 2922 . . 3  |-  A. x  e.  X  ( (
1 S x )  =  x  /\  A. y  e.  CC  ( A. z  e.  X  ( y S ( x G z ) )  =  ( ( y S x ) G ( y S z ) )  /\  A. z  e.  CC  (
( ( y  +  z ) S x )  =  ( ( y S x ) G ( z S x ) )  /\  ( ( y  x.  z ) S x )  =  ( y S ( z S x ) ) ) ) )
19 ablogrpo 27401 . . . . . 6  |-  ( G  e.  AbelOp  ->  G  e.  GrpOp )
202, 19ax-mp 5 . . . . 5  |-  G  e. 
GrpOp
21 isvciOLD.2 . . . . 5  |-  dom  G  =  ( X  X.  X )
2220, 21grporn 27375 . . . 4  |-  X  =  ran  G
2322isvcOLD 27434 . . 3  |-  ( <. G ,  S >.  e. 
CVecOLD  <->  ( G  e. 
AbelOp  /\  S : ( CC  X.  X ) --> X  /\  A. x  e.  X  ( (
1 S x )  =  x  /\  A. y  e.  CC  ( A. z  e.  X  ( y S ( x G z ) )  =  ( ( y S x ) G ( y S z ) )  /\  A. z  e.  CC  (
( ( y  +  z ) S x )  =  ( ( y S x ) G ( z S x ) )  /\  ( ( y  x.  z ) S x )  =  ( y S ( z S x ) ) ) ) ) ) )
242, 3, 18, 23mpbir3an 1244 . 2  |-  <. G ,  S >.  e.  CVecOLD
251, 24eqeltri 2697 1  |-  W  e. 
CVecOLD
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   <.cop 4183    X. cxp 5112   dom cdm 5114   -->wf 5884  (class class class)co 6650   CCcc 9934   1c1 9937    + caddc 9939    x. cmul 9941   GrpOpcgr 27343   AbelOpcablo 27398   CVecOLDcvc 27413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-grpo 27347  df-ablo 27399  df-vc 27414
This theorem is referenced by:  cncvcOLD  27438  hilvc  28019  hhssnv  28121
  Copyright terms: Public domain W3C validator