Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmapval Structured version   Visualization version   Unicode version

Theorem hdmapval 37120
Description: Value of map from vectors to functionals in the closed kernel dual space. This is the function sigma on line 27 above part 9 in [Baer] p. 48. We select a convenient fixed reference vector  E to be  <. 0 ,  1 >. (corresponding to vector u on p. 48 line 7) whose span is the lattice isomorphism map of the fiducial atom  P  =  ( ( oc `  K
) `  W ) (see dvheveccl 36401). 
( J `  E
) is a fixed reference functional determined by this vector (corresponding to u' on line 8; mapdhvmap 37058 shows in Baer's notation (Fu)* = Gu'). Baer's independent vectors v and w on line 7 correspond to our  z that the  A. z  e.  V ranges over. The middle term  ( I `  <. E ,  ( J `
 E ) ,  z >. ) provides isolation to allow  E and  T to assume the same value without conflict. Closure is shown by hdmapcl 37122. If a separate auxiliary vector is known, hdmapval2 37124 provides a version without quantification. (Contributed by NM, 15-May-2015.)
Hypotheses
Ref Expression
hdmapval.h  |-  H  =  ( LHyp `  K
)
hdmapfval.e  |-  E  = 
<. (  _I  |`  ( Base `  K ) ) ,  (  _I  |`  (
( LTrn `  K ) `  W ) ) >.
hdmapfval.u  |-  U  =  ( ( DVecH `  K
) `  W )
hdmapfval.v  |-  V  =  ( Base `  U
)
hdmapfval.n  |-  N  =  ( LSpan `  U )
hdmapfval.c  |-  C  =  ( (LCDual `  K
) `  W )
hdmapfval.d  |-  D  =  ( Base `  C
)
hdmapfval.j  |-  J  =  ( (HVMap `  K
) `  W )
hdmapfval.i  |-  I  =  ( (HDMap1 `  K
) `  W )
hdmapfval.s  |-  S  =  ( (HDMap `  K
) `  W )
hdmapfval.k  |-  ( ph  ->  ( K  e.  A  /\  W  e.  H
) )
hdmapval.t  |-  ( ph  ->  T  e.  V )
Assertion
Ref Expression
hdmapval  |-  ( ph  ->  ( S `  T
)  =  ( iota_ y  e.  D  A. z  e.  V  ( -.  z  e.  ( ( N `  { E } )  u.  ( N `  { T } ) )  -> 
y  =  ( I `
 <. z ,  ( I `  <. E , 
( J `  E
) ,  z >.
) ,  T >. ) ) ) )
Distinct variable groups:    y, z, K    y, D    y, E, z    y, I, z    y, U, z    y, V, z   
y, W, z    y, T, z
Allowed substitution hints:    ph( y, z)    A( y, z)    C( y, z)    D( z)    S( y, z)    H( y, z)    J( y, z)    N( y, z)

Proof of Theorem hdmapval
Dummy variable  t is distinct from all other variables.
StepHypRef Expression
1 hdmapval.h . . . 4  |-  H  =  ( LHyp `  K
)
2 hdmapfval.e . . . 4  |-  E  = 
<. (  _I  |`  ( Base `  K ) ) ,  (  _I  |`  (
( LTrn `  K ) `  W ) ) >.
3 hdmapfval.u . . . 4  |-  U  =  ( ( DVecH `  K
) `  W )
4 hdmapfval.v . . . 4  |-  V  =  ( Base `  U
)
5 hdmapfval.n . . . 4  |-  N  =  ( LSpan `  U )
6 hdmapfval.c . . . 4  |-  C  =  ( (LCDual `  K
) `  W )
7 hdmapfval.d . . . 4  |-  D  =  ( Base `  C
)
8 hdmapfval.j . . . 4  |-  J  =  ( (HVMap `  K
) `  W )
9 hdmapfval.i . . . 4  |-  I  =  ( (HDMap1 `  K
) `  W )
10 hdmapfval.s . . . 4  |-  S  =  ( (HDMap `  K
) `  W )
11 hdmapfval.k . . . 4  |-  ( ph  ->  ( K  e.  A  /\  W  e.  H
) )
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11hdmapfval 37119 . . 3  |-  ( ph  ->  S  =  ( t  e.  V  |->  ( iota_ y  e.  D  A. z  e.  V  ( -.  z  e.  ( ( N `  { E } )  u.  ( N `  { t } ) )  -> 
y  =  ( I `
 <. z ,  ( I `  <. E , 
( J `  E
) ,  z >.
) ,  t >.
) ) ) ) )
1312fveq1d 6193 . 2  |-  ( ph  ->  ( S `  T
)  =  ( ( t  e.  V  |->  (
iota_ y  e.  D  A. z  e.  V  ( -.  z  e.  ( ( N `  { E } )  u.  ( N `  {
t } ) )  ->  y  =  ( I `  <. z ,  ( I `  <. E ,  ( J `
 E ) ,  z >. ) ,  t
>. ) ) ) ) `
 T ) )
14 hdmapval.t . . 3  |-  ( ph  ->  T  e.  V )
15 riotaex 6615 . . 3  |-  ( iota_ y  e.  D  A. z  e.  V  ( -.  z  e.  ( ( N `  { E } )  u.  ( N `  { T } ) )  -> 
y  =  ( I `
 <. z ,  ( I `  <. E , 
( J `  E
) ,  z >.
) ,  T >. ) ) )  e.  _V
16 sneq 4187 . . . . . . . . . . 11  |-  ( t  =  T  ->  { t }  =  { T } )
1716fveq2d 6195 . . . . . . . . . 10  |-  ( t  =  T  ->  ( N `  { t } )  =  ( N `  { T } ) )
1817uneq2d 3767 . . . . . . . . 9  |-  ( t  =  T  ->  (
( N `  { E } )  u.  ( N `  { t } ) )  =  ( ( N `  { E } )  u.  ( N `  { T } ) ) )
1918eleq2d 2687 . . . . . . . 8  |-  ( t  =  T  ->  (
z  e.  ( ( N `  { E } )  u.  ( N `  { t } ) )  <->  z  e.  ( ( N `  { E } )  u.  ( N `  { T } ) ) ) )
2019notbid 308 . . . . . . 7  |-  ( t  =  T  ->  ( -.  z  e.  (
( N `  { E } )  u.  ( N `  { t } ) )  <->  -.  z  e.  ( ( N `  { E } )  u.  ( N `  { T } ) ) ) )
21 oteq3 4413 . . . . . . . . 9  |-  ( t  =  T  ->  <. z ,  ( I `  <. E ,  ( J `
 E ) ,  z >. ) ,  t
>.  =  <. z ,  ( I `  <. E ,  ( J `  E ) ,  z
>. ) ,  T >. )
2221fveq2d 6195 . . . . . . . 8  |-  ( t  =  T  ->  (
I `  <. z ,  ( I `  <. E ,  ( J `  E ) ,  z
>. ) ,  t >.
)  =  ( I `
 <. z ,  ( I `  <. E , 
( J `  E
) ,  z >.
) ,  T >. ) )
2322eqeq2d 2632 . . . . . . 7  |-  ( t  =  T  ->  (
y  =  ( I `
 <. z ,  ( I `  <. E , 
( J `  E
) ,  z >.
) ,  t >.
)  <->  y  =  ( I `  <. z ,  ( I `  <. E ,  ( J `
 E ) ,  z >. ) ,  T >. ) ) )
2420, 23imbi12d 334 . . . . . 6  |-  ( t  =  T  ->  (
( -.  z  e.  ( ( N `  { E } )  u.  ( N `  {
t } ) )  ->  y  =  ( I `  <. z ,  ( I `  <. E ,  ( J `
 E ) ,  z >. ) ,  t
>. ) )  <->  ( -.  z  e.  ( ( N `  { E } )  u.  ( N `  { T } ) )  -> 
y  =  ( I `
 <. z ,  ( I `  <. E , 
( J `  E
) ,  z >.
) ,  T >. ) ) ) )
2524ralbidv 2986 . . . . 5  |-  ( t  =  T  ->  ( A. z  e.  V  ( -.  z  e.  ( ( N `  { E } )  u.  ( N `  {
t } ) )  ->  y  =  ( I `  <. z ,  ( I `  <. E ,  ( J `
 E ) ,  z >. ) ,  t
>. ) )  <->  A. z  e.  V  ( -.  z  e.  ( ( N `  { E } )  u.  ( N `  { T } ) )  -> 
y  =  ( I `
 <. z ,  ( I `  <. E , 
( J `  E
) ,  z >.
) ,  T >. ) ) ) )
2625riotabidv 6613 . . . 4  |-  ( t  =  T  ->  ( iota_ y  e.  D  A. z  e.  V  ( -.  z  e.  (
( N `  { E } )  u.  ( N `  { t } ) )  -> 
y  =  ( I `
 <. z ,  ( I `  <. E , 
( J `  E
) ,  z >.
) ,  t >.
) ) )  =  ( iota_ y  e.  D  A. z  e.  V  ( -.  z  e.  ( ( N `  { E } )  u.  ( N `  { T } ) )  -> 
y  =  ( I `
 <. z ,  ( I `  <. E , 
( J `  E
) ,  z >.
) ,  T >. ) ) ) )
27 eqid 2622 . . . 4  |-  ( t  e.  V  |->  ( iota_ y  e.  D  A. z  e.  V  ( -.  z  e.  ( ( N `  { E } )  u.  ( N `  { t } ) )  -> 
y  =  ( I `
 <. z ,  ( I `  <. E , 
( J `  E
) ,  z >.
) ,  t >.
) ) ) )  =  ( t  e.  V  |->  ( iota_ y  e.  D  A. z  e.  V  ( -.  z  e.  ( ( N `  { E } )  u.  ( N `  {
t } ) )  ->  y  =  ( I `  <. z ,  ( I `  <. E ,  ( J `
 E ) ,  z >. ) ,  t
>. ) ) ) )
2826, 27fvmptg 6280 . . 3  |-  ( ( T  e.  V  /\  ( iota_ y  e.  D  A. z  e.  V  ( -.  z  e.  ( ( N `  { E } )  u.  ( N `  { T } ) )  -> 
y  =  ( I `
 <. z ,  ( I `  <. E , 
( J `  E
) ,  z >.
) ,  T >. ) ) )  e.  _V )  ->  ( ( t  e.  V  |->  ( iota_ y  e.  D  A. z  e.  V  ( -.  z  e.  ( ( N `  { E } )  u.  ( N `  { t } ) )  -> 
y  =  ( I `
 <. z ,  ( I `  <. E , 
( J `  E
) ,  z >.
) ,  t >.
) ) ) ) `
 T )  =  ( iota_ y  e.  D  A. z  e.  V  ( -.  z  e.  ( ( N `  { E } )  u.  ( N `  { T } ) )  -> 
y  =  ( I `
 <. z ,  ( I `  <. E , 
( J `  E
) ,  z >.
) ,  T >. ) ) ) )
2914, 15, 28sylancl 694 . 2  |-  ( ph  ->  ( ( t  e.  V  |->  ( iota_ y  e.  D  A. z  e.  V  ( -.  z  e.  ( ( N `  { E } )  u.  ( N `  {
t } ) )  ->  y  =  ( I `  <. z ,  ( I `  <. E ,  ( J `
 E ) ,  z >. ) ,  t
>. ) ) ) ) `
 T )  =  ( iota_ y  e.  D  A. z  e.  V  ( -.  z  e.  ( ( N `  { E } )  u.  ( N `  { T } ) )  -> 
y  =  ( I `
 <. z ,  ( I `  <. E , 
( J `  E
) ,  z >.
) ,  T >. ) ) ) )
3013, 29eqtrd 2656 1  |-  ( ph  ->  ( S `  T
)  =  ( iota_ y  e.  D  A. z  e.  V  ( -.  z  e.  ( ( N `  { E } )  u.  ( N `  { T } ) )  -> 
y  =  ( I `
 <. z ,  ( I `  <. E , 
( J `  E
) ,  z >.
) ,  T >. ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200    u. cun 3572   {csn 4177   <.cop 4183   <.cotp 4185    |-> cmpt 4729    _I cid 5023    |` cres 5116   ` cfv 5888   iota_crio 6610   Basecbs 15857   LSpanclspn 18971   LHypclh 35270   LTrncltrn 35387   DVecHcdvh 36367  LCDualclcd 36875  HVMapchvm 37045  HDMap1chdma1 37081  HDMapchdma 37082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-ot 4186  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-hdmap 37084
This theorem is referenced by:  hdmapcl  37122  hdmapval2lem  37123
  Copyright terms: Public domain W3C validator