HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hoadddir Structured version   Visualization version   Unicode version

Theorem hoadddir 28663
Description: Scalar product reverse distributive law for Hilbert space operators. (Contributed by NM, 25-Aug-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hoadddir  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  T : ~H --> ~H )  -> 
( ( A  +  B )  .op  T
)  =  ( ( A  .op  T ) 
+op  ( B  .op  T ) ) )

Proof of Theorem hoadddir
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 addcl 10018 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  e.  CC )
21anim1i 592 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  T : ~H --> ~H )  ->  ( ( A  +  B )  e.  CC  /\  T : ~H --> ~H ) )
323impa 1259 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  T : ~H --> ~H )  -> 
( ( A  +  B )  e.  CC  /\  T : ~H --> ~H )
)
4 homval 28600 . . . . . . 7  |-  ( ( ( A  +  B
)  e.  CC  /\  T : ~H --> ~H  /\  x  e.  ~H )  ->  ( ( ( A  +  B )  .op  T ) `  x )  =  ( ( A  +  B )  .h  ( T `  x
) ) )
543expa 1265 . . . . . 6  |-  ( ( ( ( A  +  B )  e.  CC  /\  T : ~H --> ~H )  /\  x  e.  ~H )  ->  ( ( ( A  +  B ) 
.op  T ) `  x )  =  ( ( A  +  B
)  .h  ( T `
 x ) ) )
63, 5sylan 488 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  T : ~H --> ~H )  /\  x  e.  ~H )  ->  ( ( ( A  +  B ) 
.op  T ) `  x )  =  ( ( A  +  B
)  .h  ( T `
 x ) ) )
7 homval 28600 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  T : ~H --> ~H  /\  x  e.  ~H )  ->  ( ( A  .op  T ) `  x )  =  ( A  .h  ( T `  x ) ) )
873expa 1265 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  T : ~H --> ~H )  /\  x  e.  ~H )  ->  ( ( A 
.op  T ) `  x )  =  ( A  .h  ( T `
 x ) ) )
983adantl2 1218 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  T : ~H --> ~H )  /\  x  e.  ~H )  ->  ( ( A 
.op  T ) `  x )  =  ( A  .h  ( T `
 x ) ) )
10 homval 28600 . . . . . . . . 9  |-  ( ( B  e.  CC  /\  T : ~H --> ~H  /\  x  e.  ~H )  ->  ( ( B  .op  T ) `  x )  =  ( B  .h  ( T `  x ) ) )
11103expa 1265 . . . . . . . 8  |-  ( ( ( B  e.  CC  /\  T : ~H --> ~H )  /\  x  e.  ~H )  ->  ( ( B 
.op  T ) `  x )  =  ( B  .h  ( T `
 x ) ) )
12113adantl1 1217 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  T : ~H --> ~H )  /\  x  e.  ~H )  ->  ( ( B 
.op  T ) `  x )  =  ( B  .h  ( T `
 x ) ) )
139, 12oveq12d 6668 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  T : ~H --> ~H )  /\  x  e.  ~H )  ->  ( ( ( A  .op  T ) `
 x )  +h  ( ( B  .op  T ) `  x ) )  =  ( ( A  .h  ( T `
 x ) )  +h  ( B  .h  ( T `  x ) ) ) )
14 ffvelrn 6357 . . . . . . . . . 10  |-  ( ( T : ~H --> ~H  /\  x  e.  ~H )  ->  ( T `  x
)  e.  ~H )
15 ax-hvdistr2 27866 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( T `  x )  e.  ~H )  ->  (
( A  +  B
)  .h  ( T `
 x ) )  =  ( ( A  .h  ( T `  x ) )  +h  ( B  .h  ( T `  x )
) ) )
1614, 15syl3an3 1361 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( T : ~H --> ~H  /\  x  e.  ~H )
)  ->  ( ( A  +  B )  .h  ( T `  x
) )  =  ( ( A  .h  ( T `  x )
)  +h  ( B  .h  ( T `  x ) ) ) )
17163exp 1264 . . . . . . . 8  |-  ( A  e.  CC  ->  ( B  e.  CC  ->  ( ( T : ~H --> ~H  /\  x  e.  ~H )  ->  ( ( A  +  B )  .h  ( T `  x
) )  =  ( ( A  .h  ( T `  x )
)  +h  ( B  .h  ( T `  x ) ) ) ) ) )
1817exp4a 633 . . . . . . 7  |-  ( A  e.  CC  ->  ( B  e.  CC  ->  ( T : ~H --> ~H  ->  ( x  e.  ~H  ->  ( ( A  +  B
)  .h  ( T `
 x ) )  =  ( ( A  .h  ( T `  x ) )  +h  ( B  .h  ( T `  x )
) ) ) ) ) )
19183imp1 1280 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  T : ~H --> ~H )  /\  x  e.  ~H )  ->  ( ( A  +  B )  .h  ( T `  x
) )  =  ( ( A  .h  ( T `  x )
)  +h  ( B  .h  ( T `  x ) ) ) )
2013, 19eqtr4d 2659 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  T : ~H --> ~H )  /\  x  e.  ~H )  ->  ( ( ( A  .op  T ) `
 x )  +h  ( ( B  .op  T ) `  x ) )  =  ( ( A  +  B )  .h  ( T `  x ) ) )
216, 20eqtr4d 2659 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  T : ~H --> ~H )  /\  x  e.  ~H )  ->  ( ( ( A  +  B ) 
.op  T ) `  x )  =  ( ( ( A  .op  T ) `  x )  +h  ( ( B 
.op  T ) `  x ) ) )
22 homulcl 28618 . . . . . . 7  |-  ( ( A  e.  CC  /\  T : ~H --> ~H )  ->  ( A  .op  T
) : ~H --> ~H )
23 homulcl 28618 . . . . . . 7  |-  ( ( B  e.  CC  /\  T : ~H --> ~H )  ->  ( B  .op  T
) : ~H --> ~H )
2422, 23anim12i 590 . . . . . 6  |-  ( ( ( A  e.  CC  /\  T : ~H --> ~H )  /\  ( B  e.  CC  /\  T : ~H --> ~H )
)  ->  ( ( A  .op  T ) : ~H --> ~H  /\  ( B  .op  T ) : ~H --> ~H ) )
25243impdir 1382 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  T : ~H --> ~H )  -> 
( ( A  .op  T ) : ~H --> ~H  /\  ( B  .op  T ) : ~H --> ~H )
)
26 hosval 28599 . . . . . 6  |-  ( ( ( A  .op  T
) : ~H --> ~H  /\  ( B  .op  T ) : ~H --> ~H  /\  x  e.  ~H )  ->  ( ( ( A 
.op  T )  +op  ( B  .op  T ) ) `  x )  =  ( ( ( A  .op  T ) `
 x )  +h  ( ( B  .op  T ) `  x ) ) )
27263expa 1265 . . . . 5  |-  ( ( ( ( A  .op  T ) : ~H --> ~H  /\  ( B  .op  T ) : ~H --> ~H )  /\  x  e.  ~H )  ->  ( ( ( A  .op  T ) 
+op  ( B  .op  T ) ) `  x
)  =  ( ( ( A  .op  T
) `  x )  +h  ( ( B  .op  T ) `  x ) ) )
2825, 27sylan 488 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  T : ~H --> ~H )  /\  x  e.  ~H )  ->  ( ( ( A  .op  T ) 
+op  ( B  .op  T ) ) `  x
)  =  ( ( ( A  .op  T
) `  x )  +h  ( ( B  .op  T ) `  x ) ) )
2921, 28eqtr4d 2659 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  T : ~H --> ~H )  /\  x  e.  ~H )  ->  ( ( ( A  +  B ) 
.op  T ) `  x )  =  ( ( ( A  .op  T )  +op  ( B 
.op  T ) ) `
 x ) )
3029ralrimiva 2966 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  T : ~H --> ~H )  ->  A. x  e.  ~H  ( ( ( A  +  B )  .op  T ) `  x )  =  ( ( ( A  .op  T ) 
+op  ( B  .op  T ) ) `  x
) )
31 homulcl 28618 . . . 4  |-  ( ( ( A  +  B
)  e.  CC  /\  T : ~H --> ~H )  ->  ( ( A  +  B )  .op  T
) : ~H --> ~H )
321, 31stoic3 1701 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  T : ~H --> ~H )  -> 
( ( A  +  B )  .op  T
) : ~H --> ~H )
33 hoaddcl 28617 . . . . 5  |-  ( ( ( A  .op  T
) : ~H --> ~H  /\  ( B  .op  T ) : ~H --> ~H )  ->  ( ( A  .op  T )  +op  ( B 
.op  T ) ) : ~H --> ~H )
3422, 23, 33syl2an 494 . . . 4  |-  ( ( ( A  e.  CC  /\  T : ~H --> ~H )  /\  ( B  e.  CC  /\  T : ~H --> ~H )
)  ->  ( ( A  .op  T )  +op  ( B  .op  T ) ) : ~H --> ~H )
35343impdir 1382 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  T : ~H --> ~H )  -> 
( ( A  .op  T )  +op  ( B 
.op  T ) ) : ~H --> ~H )
36 hoeq 28619 . . 3  |-  ( ( ( ( A  +  B )  .op  T
) : ~H --> ~H  /\  ( ( A  .op  T )  +op  ( B 
.op  T ) ) : ~H --> ~H )  ->  ( A. x  e. 
~H  ( ( ( A  +  B ) 
.op  T ) `  x )  =  ( ( ( A  .op  T )  +op  ( B 
.op  T ) ) `
 x )  <->  ( ( A  +  B )  .op  T )  =  ( ( A  .op  T
)  +op  ( B  .op  T ) ) ) )
3732, 35, 36syl2anc 693 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  T : ~H --> ~H )  -> 
( A. x  e. 
~H  ( ( ( A  +  B ) 
.op  T ) `  x )  =  ( ( ( A  .op  T )  +op  ( B 
.op  T ) ) `
 x )  <->  ( ( A  +  B )  .op  T )  =  ( ( A  .op  T
)  +op  ( B  .op  T ) ) ) )
3830, 37mpbid 222 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  T : ~H --> ~H )  -> 
( ( A  +  B )  .op  T
)  =  ( ( A  .op  T ) 
+op  ( B  .op  T ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934    + caddc 9939   ~Hchil 27776    +h cva 27777    .h csm 27778    +op chos 27795    .op chot 27796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-addcl 9996  ax-hilex 27856  ax-hfvadd 27857  ax-hfvmul 27862  ax-hvdistr2 27866
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-hosum 28589  df-homul 28590
This theorem is referenced by:  ho2times  28678
  Copyright terms: Public domain W3C validator