HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hoadddi Structured version   Visualization version   Unicode version

Theorem hoadddi 28662
Description: Scalar product distributive law for Hilbert space operators. (Contributed by NM, 12-Aug-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hoadddi  |-  ( ( A  e.  CC  /\  T : ~H --> ~H  /\  U : ~H --> ~H )  ->  ( A  .op  ( T  +op  U ) )  =  ( ( A 
.op  T )  +op  ( A  .op  U ) ) )

Proof of Theorem hoadddi
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simpl1 1064 . . . . . 6  |-  ( ( ( A  e.  CC  /\  T : ~H --> ~H  /\  U : ~H --> ~H )  /\  x  e.  ~H )  ->  A  e.  CC )
2 ffvelrn 6357 . . . . . . 7  |-  ( ( T : ~H --> ~H  /\  x  e.  ~H )  ->  ( T `  x
)  e.  ~H )
323ad2antl2 1224 . . . . . 6  |-  ( ( ( A  e.  CC  /\  T : ~H --> ~H  /\  U : ~H --> ~H )  /\  x  e.  ~H )  ->  ( T `  x )  e.  ~H )
4 ffvelrn 6357 . . . . . . 7  |-  ( ( U : ~H --> ~H  /\  x  e.  ~H )  ->  ( U `  x
)  e.  ~H )
543ad2antl3 1225 . . . . . 6  |-  ( ( ( A  e.  CC  /\  T : ~H --> ~H  /\  U : ~H --> ~H )  /\  x  e.  ~H )  ->  ( U `  x )  e.  ~H )
6 ax-hvdistr1 27865 . . . . . 6  |-  ( ( A  e.  CC  /\  ( T `  x )  e.  ~H  /\  ( U `  x )  e.  ~H )  ->  ( A  .h  ( ( T `  x )  +h  ( U `  x
) ) )  =  ( ( A  .h  ( T `  x ) )  +h  ( A  .h  ( U `  x ) ) ) )
71, 3, 5, 6syl3anc 1326 . . . . 5  |-  ( ( ( A  e.  CC  /\  T : ~H --> ~H  /\  U : ~H --> ~H )  /\  x  e.  ~H )  ->  ( A  .h  ( ( T `  x )  +h  ( U `  x )
) )  =  ( ( A  .h  ( T `  x )
)  +h  ( A  .h  ( U `  x ) ) ) )
8 hosval 28599 . . . . . . . 8  |-  ( ( T : ~H --> ~H  /\  U : ~H --> ~H  /\  x  e.  ~H )  ->  ( ( T  +op  U ) `  x )  =  ( ( T `
 x )  +h  ( U `  x
) ) )
98oveq2d 6666 . . . . . . 7  |-  ( ( T : ~H --> ~H  /\  U : ~H --> ~H  /\  x  e.  ~H )  ->  ( A  .h  (
( T  +op  U
) `  x )
)  =  ( A  .h  ( ( T `
 x )  +h  ( U `  x
) ) ) )
1093expa 1265 . . . . . 6  |-  ( ( ( T : ~H --> ~H  /\  U : ~H --> ~H )  /\  x  e.  ~H )  ->  ( A  .h  ( ( T  +op  U ) `  x ) )  =  ( A  .h  (
( T `  x
)  +h  ( U `
 x ) ) ) )
11103adantl1 1217 . . . . 5  |-  ( ( ( A  e.  CC  /\  T : ~H --> ~H  /\  U : ~H --> ~H )  /\  x  e.  ~H )  ->  ( A  .h  ( ( T  +op  U ) `  x ) )  =  ( A  .h  ( ( T `
 x )  +h  ( U `  x
) ) ) )
12 homval 28600 . . . . . . . 8  |-  ( ( A  e.  CC  /\  T : ~H --> ~H  /\  x  e.  ~H )  ->  ( ( A  .op  T ) `  x )  =  ( A  .h  ( T `  x ) ) )
13123expa 1265 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  T : ~H --> ~H )  /\  x  e.  ~H )  ->  ( ( A 
.op  T ) `  x )  =  ( A  .h  ( T `
 x ) ) )
14133adantl3 1219 . . . . . 6  |-  ( ( ( A  e.  CC  /\  T : ~H --> ~H  /\  U : ~H --> ~H )  /\  x  e.  ~H )  ->  ( ( A 
.op  T ) `  x )  =  ( A  .h  ( T `
 x ) ) )
15 homval 28600 . . . . . . . 8  |-  ( ( A  e.  CC  /\  U : ~H --> ~H  /\  x  e.  ~H )  ->  ( ( A  .op  U ) `  x )  =  ( A  .h  ( U `  x ) ) )
16153expa 1265 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  U : ~H --> ~H )  /\  x  e.  ~H )  ->  ( ( A 
.op  U ) `  x )  =  ( A  .h  ( U `
 x ) ) )
17163adantl2 1218 . . . . . 6  |-  ( ( ( A  e.  CC  /\  T : ~H --> ~H  /\  U : ~H --> ~H )  /\  x  e.  ~H )  ->  ( ( A 
.op  U ) `  x )  =  ( A  .h  ( U `
 x ) ) )
1814, 17oveq12d 6668 . . . . 5  |-  ( ( ( A  e.  CC  /\  T : ~H --> ~H  /\  U : ~H --> ~H )  /\  x  e.  ~H )  ->  ( ( ( A  .op  T ) `
 x )  +h  ( ( A  .op  U ) `  x ) )  =  ( ( A  .h  ( T `
 x ) )  +h  ( A  .h  ( U `  x ) ) ) )
197, 11, 183eqtr4d 2666 . . . 4  |-  ( ( ( A  e.  CC  /\  T : ~H --> ~H  /\  U : ~H --> ~H )  /\  x  e.  ~H )  ->  ( A  .h  ( ( T  +op  U ) `  x ) )  =  ( ( ( A  .op  T
) `  x )  +h  ( ( A  .op  U ) `  x ) ) )
20 hoaddcl 28617 . . . . . . 7  |-  ( ( T : ~H --> ~H  /\  U : ~H --> ~H )  ->  ( T  +op  U
) : ~H --> ~H )
2120anim2i 593 . . . . . 6  |-  ( ( A  e.  CC  /\  ( T : ~H --> ~H  /\  U : ~H --> ~H )
)  ->  ( A  e.  CC  /\  ( T 
+op  U ) : ~H --> ~H ) )
22213impb 1260 . . . . 5  |-  ( ( A  e.  CC  /\  T : ~H --> ~H  /\  U : ~H --> ~H )  ->  ( A  e.  CC  /\  ( T  +op  U
) : ~H --> ~H )
)
23 homval 28600 . . . . . 6  |-  ( ( A  e.  CC  /\  ( T  +op  U ) : ~H --> ~H  /\  x  e.  ~H )  ->  ( ( A  .op  ( T  +op  U ) ) `  x )  =  ( A  .h  ( ( T  +op  U ) `  x ) ) )
24233expa 1265 . . . . 5  |-  ( ( ( A  e.  CC  /\  ( T  +op  U
) : ~H --> ~H )  /\  x  e.  ~H )  ->  ( ( A 
.op  ( T  +op  U ) ) `  x
)  =  ( A  .h  ( ( T 
+op  U ) `  x ) ) )
2522, 24sylan 488 . . . 4  |-  ( ( ( A  e.  CC  /\  T : ~H --> ~H  /\  U : ~H --> ~H )  /\  x  e.  ~H )  ->  ( ( A 
.op  ( T  +op  U ) ) `  x
)  =  ( A  .h  ( ( T 
+op  U ) `  x ) ) )
26 homulcl 28618 . . . . . . 7  |-  ( ( A  e.  CC  /\  T : ~H --> ~H )  ->  ( A  .op  T
) : ~H --> ~H )
27 homulcl 28618 . . . . . . 7  |-  ( ( A  e.  CC  /\  U : ~H --> ~H )  ->  ( A  .op  U
) : ~H --> ~H )
2826, 27anim12i 590 . . . . . 6  |-  ( ( ( A  e.  CC  /\  T : ~H --> ~H )  /\  ( A  e.  CC  /\  U : ~H --> ~H )
)  ->  ( ( A  .op  T ) : ~H --> ~H  /\  ( A  .op  U ) : ~H --> ~H ) )
29283impdi 1381 . . . . 5  |-  ( ( A  e.  CC  /\  T : ~H --> ~H  /\  U : ~H --> ~H )  ->  ( ( A  .op  T ) : ~H --> ~H  /\  ( A  .op  U ) : ~H --> ~H )
)
30 hosval 28599 . . . . . 6  |-  ( ( ( A  .op  T
) : ~H --> ~H  /\  ( A  .op  U ) : ~H --> ~H  /\  x  e.  ~H )  ->  ( ( ( A 
.op  T )  +op  ( A  .op  U ) ) `  x )  =  ( ( ( A  .op  T ) `
 x )  +h  ( ( A  .op  U ) `  x ) ) )
31303expa 1265 . . . . 5  |-  ( ( ( ( A  .op  T ) : ~H --> ~H  /\  ( A  .op  U ) : ~H --> ~H )  /\  x  e.  ~H )  ->  ( ( ( A  .op  T ) 
+op  ( A  .op  U ) ) `  x
)  =  ( ( ( A  .op  T
) `  x )  +h  ( ( A  .op  U ) `  x ) ) )
3229, 31sylan 488 . . . 4  |-  ( ( ( A  e.  CC  /\  T : ~H --> ~H  /\  U : ~H --> ~H )  /\  x  e.  ~H )  ->  ( ( ( A  .op  T ) 
+op  ( A  .op  U ) ) `  x
)  =  ( ( ( A  .op  T
) `  x )  +h  ( ( A  .op  U ) `  x ) ) )
3319, 25, 323eqtr4d 2666 . . 3  |-  ( ( ( A  e.  CC  /\  T : ~H --> ~H  /\  U : ~H --> ~H )  /\  x  e.  ~H )  ->  ( ( A 
.op  ( T  +op  U ) ) `  x
)  =  ( ( ( A  .op  T
)  +op  ( A  .op  U ) ) `  x ) )
3433ralrimiva 2966 . 2  |-  ( ( A  e.  CC  /\  T : ~H --> ~H  /\  U : ~H --> ~H )  ->  A. x  e.  ~H  ( ( A  .op  ( T  +op  U ) ) `  x )  =  ( ( ( A  .op  T ) 
+op  ( A  .op  U ) ) `  x
) )
35 homulcl 28618 . . . . 5  |-  ( ( A  e.  CC  /\  ( T  +op  U ) : ~H --> ~H )  ->  ( A  .op  ( T  +op  U ) ) : ~H --> ~H )
3620, 35sylan2 491 . . . 4  |-  ( ( A  e.  CC  /\  ( T : ~H --> ~H  /\  U : ~H --> ~H )
)  ->  ( A  .op  ( T  +op  U
) ) : ~H --> ~H )
37363impb 1260 . . 3  |-  ( ( A  e.  CC  /\  T : ~H --> ~H  /\  U : ~H --> ~H )  ->  ( A  .op  ( T  +op  U ) ) : ~H --> ~H )
38 hoaddcl 28617 . . . . 5  |-  ( ( ( A  .op  T
) : ~H --> ~H  /\  ( A  .op  U ) : ~H --> ~H )  ->  ( ( A  .op  T )  +op  ( A 
.op  U ) ) : ~H --> ~H )
3926, 27, 38syl2an 494 . . . 4  |-  ( ( ( A  e.  CC  /\  T : ~H --> ~H )  /\  ( A  e.  CC  /\  U : ~H --> ~H )
)  ->  ( ( A  .op  T )  +op  ( A  .op  U ) ) : ~H --> ~H )
40393impdi 1381 . . 3  |-  ( ( A  e.  CC  /\  T : ~H --> ~H  /\  U : ~H --> ~H )  ->  ( ( A  .op  T )  +op  ( A 
.op  U ) ) : ~H --> ~H )
41 hoeq 28619 . . 3  |-  ( ( ( A  .op  ( T  +op  U ) ) : ~H --> ~H  /\  ( ( A  .op  T )  +op  ( A 
.op  U ) ) : ~H --> ~H )  ->  ( A. x  e. 
~H  ( ( A 
.op  ( T  +op  U ) ) `  x
)  =  ( ( ( A  .op  T
)  +op  ( A  .op  U ) ) `  x )  <->  ( A  .op  ( T  +op  U
) )  =  ( ( A  .op  T
)  +op  ( A  .op  U ) ) ) )
4237, 40, 41syl2anc 693 . 2  |-  ( ( A  e.  CC  /\  T : ~H --> ~H  /\  U : ~H --> ~H )  ->  ( A. x  e. 
~H  ( ( A 
.op  ( T  +op  U ) ) `  x
)  =  ( ( ( A  .op  T
)  +op  ( A  .op  U ) ) `  x )  <->  ( A  .op  ( T  +op  U
) )  =  ( ( A  .op  T
)  +op  ( A  .op  U ) ) ) )
4334, 42mpbid 222 1  |-  ( ( A  e.  CC  /\  T : ~H --> ~H  /\  U : ~H --> ~H )  ->  ( A  .op  ( T  +op  U ) )  =  ( ( A 
.op  T )  +op  ( A  .op  U ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934   ~Hchil 27776    +h cva 27777    .h csm 27778    +op chos 27795    .op chot 27796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-hilex 27856  ax-hfvadd 27857  ax-hfvmul 27862  ax-hvdistr1 27865
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-hosum 28589  df-homul 28590
This theorem is referenced by:  hosubdi  28667  honegdi  28668  ho2times  28678  opsqrlem6  29004
  Copyright terms: Public domain W3C validator