| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > icodisj | Structured version Visualization version Unicode version | ||
| Description: End-to-end closed-below, open-above real intervals are disjoint. (Contributed by Mario Carneiro, 16-Jun-2014.) |
| Ref | Expression |
|---|---|
| icodisj |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3796 |
. . . 4
| |
| 2 | elico1 12218 |
. . . . . . . . . 10
| |
| 3 | 2 | 3adant3 1081 |
. . . . . . . . 9
|
| 4 | 3 | biimpa 501 |
. . . . . . . 8
|
| 5 | 4 | simp3d 1075 |
. . . . . . 7
|
| 6 | 5 | adantrr 753 |
. . . . . 6
|
| 7 | elico1 12218 |
. . . . . . . . . . 11
| |
| 8 | 7 | 3adant1 1079 |
. . . . . . . . . 10
|
| 9 | 8 | biimpa 501 |
. . . . . . . . 9
|
| 10 | 9 | simp2d 1074 |
. . . . . . . 8
|
| 11 | simpl2 1065 |
. . . . . . . . 9
| |
| 12 | 9 | simp1d 1073 |
. . . . . . . . 9
|
| 13 | xrlenlt 10103 |
. . . . . . . . 9
| |
| 14 | 11, 12, 13 | syl2anc 693 |
. . . . . . . 8
|
| 15 | 10, 14 | mpbid 222 |
. . . . . . 7
|
| 16 | 15 | adantrl 752 |
. . . . . 6
|
| 17 | 6, 16 | pm2.65da 600 |
. . . . 5
|
| 18 | 17 | pm2.21d 118 |
. . . 4
|
| 19 | 1, 18 | syl5bi 232 |
. . 3
|
| 20 | 19 | ssrdv 3609 |
. 2
|
| 21 | ss0 3974 |
. 2
| |
| 22 | 20, 21 | syl 17 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-xr 10078 df-le 10080 df-ico 12181 |
| This theorem is referenced by: icombl 23332 difico 29545 chtvalz 30707 |
| Copyright terms: Public domain | W3C validator |