Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  chtvalz Structured version   Visualization version   Unicode version

Theorem chtvalz 30707
Description: Value of the Chebyshev function for integers. (Contributed by Thierry Arnoux, 28-Dec-2021.)
Assertion
Ref Expression
chtvalz  |-  ( N  e.  ZZ  ->  ( theta `  N )  = 
sum_ n  e.  (
( 1 ... N
)  i^i  Prime ) ( log `  n ) )
Distinct variable group:    n, N

Proof of Theorem chtvalz
Dummy variable  i is distinct from all other variables.
StepHypRef Expression
1 zre 11381 . . 3  |-  ( N  e.  ZZ  ->  N  e.  RR )
2 chtval 24836 . . 3  |-  ( N  e.  RR  ->  ( theta `  N )  = 
sum_ n  e.  (
( 0 [,] N
)  i^i  Prime ) ( log `  n ) )
31, 2syl 17 . 2  |-  ( N  e.  ZZ  ->  ( theta `  N )  = 
sum_ n  e.  (
( 0 [,] N
)  i^i  Prime ) ( log `  n ) )
4 nnz 11399 . . . . . . 7  |-  ( N  e.  NN  ->  N  e.  ZZ )
5 ppisval 24830 . . . . . . . . 9  |-  ( N  e.  RR  ->  (
( 0 [,] N
)  i^i  Prime )  =  ( ( 2 ... ( |_ `  N
) )  i^i  Prime ) )
61, 5syl 17 . . . . . . . 8  |-  ( N  e.  ZZ  ->  (
( 0 [,] N
)  i^i  Prime )  =  ( ( 2 ... ( |_ `  N
) )  i^i  Prime ) )
7 flid 12609 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  ( |_ `  N )  =  N )
87oveq2d 6666 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  (
2 ... ( |_ `  N ) )  =  ( 2 ... N
) )
98ineq1d 3813 . . . . . . . 8  |-  ( N  e.  ZZ  ->  (
( 2 ... ( |_ `  N ) )  i^i  Prime )  =  ( ( 2 ... N
)  i^i  Prime ) )
106, 9eqtrd 2656 . . . . . . 7  |-  ( N  e.  ZZ  ->  (
( 0 [,] N
)  i^i  Prime )  =  ( ( 2 ... N )  i^i  Prime ) )
114, 10syl 17 . . . . . 6  |-  ( N  e.  NN  ->  (
( 0 [,] N
)  i^i  Prime )  =  ( ( 2 ... N )  i^i  Prime ) )
12 2nn 11185 . . . . . . . . . . . . 13  |-  2  e.  NN
13 nnuz 11723 . . . . . . . . . . . . 13  |-  NN  =  ( ZZ>= `  1 )
1412, 13eleqtri 2699 . . . . . . . . . . . 12  |-  2  e.  ( ZZ>= `  1 )
15 fzss1 12380 . . . . . . . . . . . 12  |-  ( 2  e.  ( ZZ>= `  1
)  ->  ( 2 ... N )  C_  ( 1 ... N
) )
1614, 15ax-mp 5 . . . . . . . . . . 11  |-  ( 2 ... N )  C_  ( 1 ... N
)
17 ssdif0 3942 . . . . . . . . . . 11  |-  ( ( 2 ... N ) 
C_  ( 1 ... N )  <->  ( (
2 ... N )  \ 
( 1 ... N
) )  =  (/) )
1816, 17mpbi 220 . . . . . . . . . 10  |-  ( ( 2 ... N ) 
\  ( 1 ... N ) )  =  (/)
1918ineq1i 3810 . . . . . . . . 9  |-  ( ( ( 2 ... N
)  \  ( 1 ... N ) )  i^i  Prime )  =  (
(/)  i^i  Prime )
20 0in 3969 . . . . . . . . 9  |-  ( (/)  i^i 
Prime )  =  (/)
2119, 20eqtri 2644 . . . . . . . 8  |-  ( ( ( 2 ... N
)  \  ( 1 ... N ) )  i^i  Prime )  =  (/)
2221a1i 11 . . . . . . 7  |-  ( N  e.  NN  ->  (
( ( 2 ... N )  \  (
1 ... N ) )  i^i  Prime )  =  (/) )
2313eleq2i 2693 . . . . . . . . . . . . 13  |-  ( N  e.  NN  <->  N  e.  ( ZZ>= `  1 )
)
24 fzpred 12389 . . . . . . . . . . . . 13  |-  ( N  e.  ( ZZ>= `  1
)  ->  ( 1 ... N )  =  ( { 1 }  u.  ( ( 1  +  1 ) ... N ) ) )
2523, 24sylbi 207 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
1 ... N )  =  ( { 1 }  u.  ( ( 1  +  1 ) ... N ) ) )
2625eqcomd 2628 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  ( { 1 }  u.  ( ( 1  +  1 ) ... N
) )  =  ( 1 ... N ) )
27 1p1e2 11134 . . . . . . . . . . . . 13  |-  ( 1  +  1 )  =  2
2827oveq1i 6660 . . . . . . . . . . . 12  |-  ( ( 1  +  1 ) ... N )  =  ( 2 ... N
)
2928a1i 11 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
( 1  +  1 ) ... N )  =  ( 2 ... N ) )
3026, 29difeq12d 3729 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
( { 1 }  u.  ( ( 1  +  1 ) ... N ) )  \ 
( ( 1  +  1 ) ... N
) )  =  ( ( 1 ... N
)  \  ( 2 ... N ) ) )
31 difun2 4048 . . . . . . . . . . 11  |-  ( ( { 1 }  u.  ( ( 1  +  1 ) ... N
) )  \  (
( 1  +  1 ) ... N ) )  =  ( { 1 }  \  (
( 1  +  1 ) ... N ) )
32 fzpreddisj 12390 . . . . . . . . . . . . 13  |-  ( N  e.  ( ZZ>= `  1
)  ->  ( {
1 }  i^i  (
( 1  +  1 ) ... N ) )  =  (/) )
3323, 32sylbi 207 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  ( { 1 }  i^i  ( ( 1  +  1 ) ... N
) )  =  (/) )
34 disjdif2 4047 . . . . . . . . . . . 12  |-  ( ( { 1 }  i^i  ( ( 1  +  1 ) ... N
) )  =  (/)  ->  ( { 1 } 
\  ( ( 1  +  1 ) ... N ) )  =  { 1 } )
3533, 34syl 17 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  ( { 1 }  \ 
( ( 1  +  1 ) ... N
) )  =  {
1 } )
3631, 35syl5eq 2668 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
( { 1 }  u.  ( ( 1  +  1 ) ... N ) )  \ 
( ( 1  +  1 ) ... N
) )  =  {
1 } )
3730, 36eqtr3d 2658 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( 1 ... N
)  \  ( 2 ... N ) )  =  { 1 } )
3837ineq1d 3813 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( ( 1 ... N )  \  (
2 ... N ) )  i^i  Prime )  =  ( { 1 }  i^i  Prime
) )
39 incom 3805 . . . . . . . . 9  |-  ( Prime  i^i  { 1 } )  =  ( { 1 }  i^i  Prime )
40 1nprm 15392 . . . . . . . . . 10  |-  -.  1  e.  Prime
41 disjsn 4246 . . . . . . . . . 10  |-  ( ( Prime  i^i  { 1 } )  =  (/)  <->  -.  1  e.  Prime )
4240, 41mpbir 221 . . . . . . . . 9  |-  ( Prime  i^i  { 1 } )  =  (/)
4339, 42eqtr3i 2646 . . . . . . . 8  |-  ( { 1 }  i^i  Prime )  =  (/)
4438, 43syl6eq 2672 . . . . . . 7  |-  ( N  e.  NN  ->  (
( ( 1 ... N )  \  (
2 ... N ) )  i^i  Prime )  =  (/) )
45 difininv 29354 . . . . . . 7  |-  ( ( ( ( ( 2 ... N )  \ 
( 1 ... N
) )  i^i  Prime )  =  (/)  /\  (
( ( 1 ... N )  \  (
2 ... N ) )  i^i  Prime )  =  (/) )  ->  ( ( 2 ... N )  i^i 
Prime )  =  (
( 1 ... N
)  i^i  Prime ) )
4622, 44, 45syl2anc 693 . . . . . 6  |-  ( N  e.  NN  ->  (
( 2 ... N
)  i^i  Prime )  =  ( ( 1 ... N )  i^i  Prime ) )
4711, 46eqtrd 2656 . . . . 5  |-  ( N  e.  NN  ->  (
( 0 [,] N
)  i^i  Prime )  =  ( ( 1 ... N )  i^i  Prime ) )
4847adantl 482 . . . 4  |-  ( ( N  e.  ZZ  /\  N  e.  NN )  ->  ( ( 0 [,] N )  i^i  Prime )  =  ( ( 1 ... N )  i^i 
Prime ) )
49 znnnlt1 11404 . . . . . 6  |-  ( N  e.  ZZ  ->  ( -.  N  e.  NN  <->  N  <  1 ) )
5049biimpa 501 . . . . 5  |-  ( ( N  e.  ZZ  /\  -.  N  e.  NN )  ->  N  <  1
)
51 incom 3805 . . . . . . 7  |-  ( ( 0 [,] N )  i^i  Prime )  =  ( Prime  i^i  ( 0 [,] N ) )
52 isprm3 15396 . . . . . . . . . . 11  |-  ( n  e.  Prime  <->  ( n  e.  ( ZZ>= `  2 )  /\  A. i  e.  ( 2 ... ( n  -  1 ) )  -.  i  ||  n
) )
5352simplbi 476 . . . . . . . . . 10  |-  ( n  e.  Prime  ->  n  e.  ( ZZ>= `  2 )
)
5453ssriv 3607 . . . . . . . . 9  |-  Prime  C_  ( ZZ>=
`  2 )
5512nnzi 11401 . . . . . . . . . 10  |-  2  e.  ZZ
56 uzssico 29546 . . . . . . . . . 10  |-  ( 2  e.  ZZ  ->  ( ZZ>=
`  2 )  C_  ( 2 [,) +oo ) )
5755, 56ax-mp 5 . . . . . . . . 9  |-  ( ZZ>= ` 
2 )  C_  (
2 [,) +oo )
5854, 57sstri 3612 . . . . . . . 8  |-  Prime  C_  (
2 [,) +oo )
59 incom 3805 . . . . . . . . 9  |-  ( ( 0 [,] N )  i^i  ( 2 [,) +oo ) )  =  ( ( 2 [,) +oo )  i^i  ( 0 [,] N ) )
60 0xr 10086 . . . . . . . . . . . 12  |-  0  e.  RR*
6160a1i 11 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  N  <  1 )  -> 
0  e.  RR* )
6212nnrei 11029 . . . . . . . . . . . . 13  |-  2  e.  RR
6362rexri 10097 . . . . . . . . . . . 12  |-  2  e.  RR*
6463a1i 11 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  N  <  1 )  -> 
2  e.  RR* )
65 0le0 11110 . . . . . . . . . . . 12  |-  0  <_  0
6665a1i 11 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  N  <  1 )  -> 
0  <_  0 )
671adantr 481 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  N  <  1 )  ->  N  e.  RR )
68 1red 10055 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  N  <  1 )  -> 
1  e.  RR )
6962a1i 11 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  N  <  1 )  -> 
2  e.  RR )
70 simpr 477 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  N  <  1 )  ->  N  <  1 )
71 1lt2 11194 . . . . . . . . . . . . 13  |-  1  <  2
7271a1i 11 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  N  <  1 )  -> 
1  <  2 )
7367, 68, 69, 70, 72lttrd 10198 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  N  <  1 )  ->  N  <  2 )
74 iccssico 12245 . . . . . . . . . . 11  |-  ( ( ( 0  e.  RR*  /\  2  e.  RR* )  /\  ( 0  <_  0  /\  N  <  2
) )  ->  (
0 [,] N ) 
C_  ( 0 [,) 2 ) )
7561, 64, 66, 73, 74syl22anc 1327 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  N  <  1 )  -> 
( 0 [,] N
)  C_  ( 0 [,) 2 ) )
76 pnfxr 10092 . . . . . . . . . . 11  |- +oo  e.  RR*
77 icodisj 12297 . . . . . . . . . . 11  |-  ( ( 0  e.  RR*  /\  2  e.  RR*  /\ +oo  e.  RR* )  ->  ( (
0 [,) 2 )  i^i  ( 2 [,) +oo ) )  =  (/) )
7860, 63, 76, 77mp3an 1424 . . . . . . . . . 10  |-  ( ( 0 [,) 2 )  i^i  ( 2 [,) +oo ) )  =  (/)
79 ssdisj 4026 . . . . . . . . . 10  |-  ( ( ( 0 [,] N
)  C_  ( 0 [,) 2 )  /\  ( ( 0 [,) 2 )  i^i  (
2 [,) +oo )
)  =  (/) )  -> 
( ( 0 [,] N )  i^i  (
2 [,) +oo )
)  =  (/) )
8075, 78, 79sylancl 694 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  N  <  1 )  -> 
( ( 0 [,] N )  i^i  (
2 [,) +oo )
)  =  (/) )
8159, 80syl5eqr 2670 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  N  <  1 )  -> 
( ( 2 [,) +oo )  i^i  (
0 [,] N ) )  =  (/) )
82 ssdisj 4026 . . . . . . . 8  |-  ( ( Prime  C_  ( 2 [,) +oo )  /\  ( ( 2 [,) +oo )  i^i  (
0 [,] N ) )  =  (/) )  -> 
( Prime  i^i  (
0 [,] N ) )  =  (/) )
8358, 81, 82sylancr 695 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  N  <  1 )  -> 
( Prime  i^i  (
0 [,] N ) )  =  (/) )
8451, 83syl5eq 2668 . . . . . 6  |-  ( ( N  e.  ZZ  /\  N  <  1 )  -> 
( ( 0 [,] N )  i^i  Prime )  =  (/) )
85 1zzd 11408 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  N  <  1 )  -> 
1  e.  ZZ )
86 simpl 473 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  N  <  1 )  ->  N  e.  ZZ )
87 fzn 12357 . . . . . . . . . 10  |-  ( ( 1  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  <  1  <->  ( 1 ... N )  =  (/) ) )
8887biimpa 501 . . . . . . . . 9  |-  ( ( ( 1  e.  ZZ  /\  N  e.  ZZ )  /\  N  <  1
)  ->  ( 1 ... N )  =  (/) )
8985, 86, 70, 88syl21anc 1325 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  N  <  1 )  -> 
( 1 ... N
)  =  (/) )
9089ineq1d 3813 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  N  <  1 )  -> 
( ( 1 ... N )  i^i  Prime )  =  ( (/)  i^i  Prime ) )
9190, 20syl6eq 2672 . . . . . 6  |-  ( ( N  e.  ZZ  /\  N  <  1 )  -> 
( ( 1 ... N )  i^i  Prime )  =  (/) )
9284, 91eqtr4d 2659 . . . . 5  |-  ( ( N  e.  ZZ  /\  N  <  1 )  -> 
( ( 0 [,] N )  i^i  Prime )  =  ( ( 1 ... N )  i^i 
Prime ) )
9350, 92syldan 487 . . . 4  |-  ( ( N  e.  ZZ  /\  -.  N  e.  NN )  ->  ( ( 0 [,] N )  i^i 
Prime )  =  (
( 1 ... N
)  i^i  Prime ) )
94 exmidd 432 . . . 4  |-  ( N  e.  ZZ  ->  ( N  e.  NN  \/  -.  N  e.  NN ) )
9548, 93, 94mpjaodan 827 . . 3  |-  ( N  e.  ZZ  ->  (
( 0 [,] N
)  i^i  Prime )  =  ( ( 1 ... N )  i^i  Prime ) )
9695sumeq1d 14431 . 2  |-  ( N  e.  ZZ  ->  sum_ n  e.  ( ( 0 [,] N )  i^i  Prime ) ( log `  n
)  =  sum_ n  e.  ( ( 1 ... N )  i^i  Prime ) ( log `  n
) )
973, 96eqtrd 2656 1  |-  ( N  e.  ZZ  ->  ( theta `  N )  = 
sum_ n  e.  (
( 1 ... N
)  i^i  Prime ) ( log `  n ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912    \ cdif 3571    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   {csn 4177   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939   +oocpnf 10071   RR*cxr 10073    < clt 10074    <_ cle 10075    - cmin 10266   NNcn 11020   2c2 11070   ZZcz 11377   ZZ>=cuz 11687   [,)cico 12177   [,]cicc 12178   ...cfz 12326   |_cfl 12591   sum_csu 14416    || cdvds 14983   Primecprime 15385   logclog 24301   thetaccht 24817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-icc 12182  df-fz 12327  df-fl 12593  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-sum 14417  df-dvds 14984  df-prm 15386  df-cht 24823
This theorem is referenced by:  hgt750lemd  30726
  Copyright terms: Public domain W3C validator