MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snunioo Structured version   Visualization version   Unicode version

Theorem snunioo 12298
Description: The closure of one end of an open real interval. (Contributed by Paul Chapman, 15-Mar-2008.) (Proof shortened by Mario Carneiro, 16-Jun-2014.)
Assertion
Ref Expression
snunioo  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  ( { A }  u.  ( A (,) B ) )  =  ( A [,) B ) )

Proof of Theorem snunioo
Dummy variables  x  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1061 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  A  e.  RR* )
2 iccid 12220 . . . 4  |-  ( A  e.  RR*  ->  ( A [,] A )  =  { A } )
31, 2syl 17 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  ( A [,] A )  =  { A } )
43uneq1d 3766 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  (
( A [,] A
)  u.  ( A (,) B ) )  =  ( { A }  u.  ( A (,) B ) ) )
5 simp2 1062 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  B  e.  RR* )
6 xrleid 11983 . . . 4  |-  ( A  e.  RR*  ->  A  <_  A )
71, 6syl 17 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  A  <_  A )
8 simp3 1063 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  A  <  B )
9 df-icc 12182 . . . 4  |-  [,]  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <_  z  /\  z  <_  y ) } )
10 df-ioo 12179 . . . 4  |-  (,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <  z  /\  z  <  y ) } )
11 xrltnle 10105 . . . 4  |-  ( ( A  e.  RR*  /\  w  e.  RR* )  ->  ( A  <  w  <->  -.  w  <_  A ) )
12 df-ico 12181 . . . 4  |-  [,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <_  z  /\  z  <  y ) } )
13 xrlelttr 11987 . . . 4  |-  ( ( w  e.  RR*  /\  A  e.  RR*  /\  B  e. 
RR* )  ->  (
( w  <_  A  /\  A  <  B )  ->  w  <  B
) )
14 xrltle 11982 . . . . . 6  |-  ( ( A  e.  RR*  /\  w  e.  RR* )  ->  ( A  <  w  ->  A  <_  w ) )
15143adant1 1079 . . . . 5  |-  ( ( A  e.  RR*  /\  A  e.  RR*  /\  w  e. 
RR* )  ->  ( A  <  w  ->  A  <_  w ) )
1615adantld 483 . . . 4  |-  ( ( A  e.  RR*  /\  A  e.  RR*  /\  w  e. 
RR* )  ->  (
( A  <_  A  /\  A  <  w )  ->  A  <_  w
) )
179, 10, 11, 12, 13, 16ixxun 12191 . . 3  |-  ( ( ( A  e.  RR*  /\  A  e.  RR*  /\  B  e.  RR* )  /\  ( A  <_  A  /\  A  <  B ) )  -> 
( ( A [,] A )  u.  ( A (,) B ) )  =  ( A [,) B ) )
181, 1, 5, 7, 8, 17syl32anc 1334 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  (
( A [,] A
)  u.  ( A (,) B ) )  =  ( A [,) B ) )
194, 18eqtr3d 2658 1  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  ( { A }  u.  ( A (,) B ) )  =  ( A [,) B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 1037    = wceq 1483    e. wcel 1990    u. cun 3572   {csn 4177   class class class wbr 4653  (class class class)co 6650   RR*cxr 10073    < clt 10074    <_ cle 10075   (,)cioo 12175   [,)cico 12177   [,]cicc 12178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-ioo 12179  df-ico 12181  df-icc 12182
This theorem is referenced by:  prunioo  12301  ioojoin  12303  icombl1  23331  ioombl  23333  tan2h  33401  mbfposadd  33457  itg2addnclem2  33462  ftc1anclem5  33489  iocunico  37796  limciccioolb  39853  fourierdlem32  40356  fourierdlem93  40416
  Copyright terms: Public domain W3C validator