MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ig1pval Structured version   Visualization version   Unicode version

Theorem ig1pval 23932
Description: Substitutions for the polynomial ideal generator function. (Contributed by Stefan O'Rear, 29-Mar-2015.) (Revised by AV, 25-Sep-2020.)
Hypotheses
Ref Expression
ig1pval.p  |-  P  =  (Poly1 `  R )
ig1pval.g  |-  G  =  (idlGen1p `
 R )
ig1pval.z  |-  .0.  =  ( 0g `  P )
ig1pval.u  |-  U  =  (LIdeal `  P )
ig1pval.d  |-  D  =  ( deg1  `  R )
ig1pval.m  |-  M  =  (Monic1p `  R )
Assertion
Ref Expression
ig1pval  |-  ( ( R  e.  V  /\  I  e.  U )  ->  ( G `  I
)  =  if ( I  =  {  .0.  } ,  .0.  ,  (
iota_ g  e.  (
I  i^i  M )
( D `  g
)  = inf ( ( D " ( I 
\  {  .0.  }
) ) ,  RR ,  <  ) ) ) )
Distinct variable groups:    g, I    g, M    R, g
Allowed substitution hints:    D( g)    P( g)    U( g)    G( g)    V( g)    .0. ( g)

Proof of Theorem ig1pval
Dummy variables  i 
r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ig1pval.g . . . 4  |-  G  =  (idlGen1p `
 R )
2 elex 3212 . . . . 5  |-  ( R  e.  V  ->  R  e.  _V )
3 fveq2 6191 . . . . . . . . . 10  |-  ( r  =  R  ->  (Poly1 `  r )  =  (Poly1 `  R ) )
4 ig1pval.p . . . . . . . . . 10  |-  P  =  (Poly1 `  R )
53, 4syl6eqr 2674 . . . . . . . . 9  |-  ( r  =  R  ->  (Poly1 `  r )  =  P )
65fveq2d 6195 . . . . . . . 8  |-  ( r  =  R  ->  (LIdeal `  (Poly1 `  r ) )  =  (LIdeal `  P
) )
7 ig1pval.u . . . . . . . 8  |-  U  =  (LIdeal `  P )
86, 7syl6eqr 2674 . . . . . . 7  |-  ( r  =  R  ->  (LIdeal `  (Poly1 `  r ) )  =  U )
95fveq2d 6195 . . . . . . . . . . 11  |-  ( r  =  R  ->  ( 0g `  (Poly1 `  r ) )  =  ( 0g `  P ) )
10 ig1pval.z . . . . . . . . . . 11  |-  .0.  =  ( 0g `  P )
119, 10syl6eqr 2674 . . . . . . . . . 10  |-  ( r  =  R  ->  ( 0g `  (Poly1 `  r ) )  =  .0.  )
1211sneqd 4189 . . . . . . . . 9  |-  ( r  =  R  ->  { ( 0g `  (Poly1 `  r
) ) }  =  {  .0.  } )
1312eqeq2d 2632 . . . . . . . 8  |-  ( r  =  R  ->  (
i  =  { ( 0g `  (Poly1 `  r
) ) }  <->  i  =  {  .0.  } ) )
14 fveq2 6191 . . . . . . . . . . 11  |-  ( r  =  R  ->  (Monic1p `  r )  =  (Monic1p `  R ) )
15 ig1pval.m . . . . . . . . . . 11  |-  M  =  (Monic1p `  R )
1614, 15syl6eqr 2674 . . . . . . . . . 10  |-  ( r  =  R  ->  (Monic1p `  r )  =  M )
1716ineq2d 3814 . . . . . . . . 9  |-  ( r  =  R  ->  (
i  i^i  (Monic1p `  r
) )  =  ( i  i^i  M ) )
18 fveq2 6191 . . . . . . . . . . . 12  |-  ( r  =  R  ->  ( deg1  `  r )  =  ( deg1  `  R ) )
19 ig1pval.d . . . . . . . . . . . 12  |-  D  =  ( deg1  `  R )
2018, 19syl6eqr 2674 . . . . . . . . . . 11  |-  ( r  =  R  ->  ( deg1  `  r )  =  D )
2120fveq1d 6193 . . . . . . . . . 10  |-  ( r  =  R  ->  (
( deg1  `
 r ) `  g )  =  ( D `  g ) )
2212difeq2d 3728 . . . . . . . . . . . 12  |-  ( r  =  R  ->  (
i  \  { ( 0g `  (Poly1 `  r ) ) } )  =  ( i  \  {  .0.  } ) )
2320, 22imaeq12d 5467 . . . . . . . . . . 11  |-  ( r  =  R  ->  (
( deg1  `
 r ) "
( i  \  {
( 0g `  (Poly1 `  r ) ) } ) )  =  ( D " ( i 
\  {  .0.  }
) ) )
2423infeq1d 8383 . . . . . . . . . 10  |-  ( r  =  R  -> inf ( ( ( deg1  `  r ) "
( i  \  {
( 0g `  (Poly1 `  r ) ) } ) ) ,  RR ,  <  )  = inf (
( D " (
i  \  {  .0.  } ) ) ,  RR ,  <  ) )
2521, 24eqeq12d 2637 . . . . . . . . 9  |-  ( r  =  R  ->  (
( ( deg1  `  r ) `  g )  = inf (
( ( deg1  `  r ) " ( i  \  { ( 0g `  (Poly1 `  r ) ) } ) ) ,  RR ,  <  )  <->  ( D `  g )  = inf (
( D " (
i  \  {  .0.  } ) ) ,  RR ,  <  ) ) )
2617, 25riotaeqbidv 6614 . . . . . . . 8  |-  ( r  =  R  ->  ( iota_ g  e.  ( i  i^i  (Monic1p `  r ) ) ( ( deg1  `  r ) `  g )  = inf (
( ( deg1  `  r ) " ( i  \  { ( 0g `  (Poly1 `  r ) ) } ) ) ,  RR ,  <  ) )  =  ( iota_ g  e.  ( i  i^i  M ) ( D `  g
)  = inf ( ( D " ( i 
\  {  .0.  }
) ) ,  RR ,  <  ) ) )
2713, 11, 26ifbieq12d 4113 . . . . . . 7  |-  ( r  =  R  ->  if ( i  =  {
( 0g `  (Poly1 `  r ) ) } ,  ( 0g `  (Poly1 `  r ) ) ,  ( iota_ g  e.  ( i  i^i  (Monic1p `  r
) ) ( ( deg1  `  r ) `  g
)  = inf ( ( ( deg1  `  r ) "
( i  \  {
( 0g `  (Poly1 `  r ) ) } ) ) ,  RR ,  <  ) ) )  =  if ( i  =  {  .0.  } ,  .0.  ,  ( iota_ g  e.  ( i  i^i 
M ) ( D `
 g )  = inf ( ( D "
( i  \  {  .0.  } ) ) ,  RR ,  <  )
) ) )
288, 27mpteq12dv 4733 . . . . . 6  |-  ( r  =  R  ->  (
i  e.  (LIdeal `  (Poly1 `  r ) )  |->  if ( i  =  {
( 0g `  (Poly1 `  r ) ) } ,  ( 0g `  (Poly1 `  r ) ) ,  ( iota_ g  e.  ( i  i^i  (Monic1p `  r
) ) ( ( deg1  `  r ) `  g
)  = inf ( ( ( deg1  `  r ) "
( i  \  {
( 0g `  (Poly1 `  r ) ) } ) ) ,  RR ,  <  ) ) ) )  =  ( i  e.  U  |->  if ( i  =  {  .0.  } ,  .0.  ,  (
iota_ g  e.  (
i  i^i  M )
( D `  g
)  = inf ( ( D " ( i 
\  {  .0.  }
) ) ,  RR ,  <  ) ) ) ) )
29 df-ig1p 23894 . . . . . 6  |- idlGen1p  =  ( r  e.  _V  |->  ( i  e.  (LIdeal `  (Poly1 `  r
) )  |->  if ( i  =  { ( 0g `  (Poly1 `  r
) ) } , 
( 0g `  (Poly1 `  r ) ) ,  ( iota_ g  e.  ( i  i^i  (Monic1p `  r
) ) ( ( deg1  `  r ) `  g
)  = inf ( ( ( deg1  `  r ) "
( i  \  {
( 0g `  (Poly1 `  r ) ) } ) ) ,  RR ,  <  ) ) ) ) )
30 fvex 6201 . . . . . . . 8  |-  (LIdeal `  P )  e.  _V
317, 30eqeltri 2697 . . . . . . 7  |-  U  e. 
_V
3231mptex 6486 . . . . . 6  |-  ( i  e.  U  |->  if ( i  =  {  .0.  } ,  .0.  ,  (
iota_ g  e.  (
i  i^i  M )
( D `  g
)  = inf ( ( D " ( i 
\  {  .0.  }
) ) ,  RR ,  <  ) ) ) )  e.  _V
3328, 29, 32fvmpt 6282 . . . . 5  |-  ( R  e.  _V  ->  (idlGen1p `  R )  =  ( i  e.  U  |->  if ( i  =  {  .0.  } ,  .0.  , 
( iota_ g  e.  ( i  i^i  M ) ( D `  g
)  = inf ( ( D " ( i 
\  {  .0.  }
) ) ,  RR ,  <  ) ) ) ) )
342, 33syl 17 . . . 4  |-  ( R  e.  V  ->  (idlGen1p `  R )  =  ( i  e.  U  |->  if ( i  =  {  .0.  } ,  .0.  , 
( iota_ g  e.  ( i  i^i  M ) ( D `  g
)  = inf ( ( D " ( i 
\  {  .0.  }
) ) ,  RR ,  <  ) ) ) ) )
351, 34syl5eq 2668 . . 3  |-  ( R  e.  V  ->  G  =  ( i  e.  U  |->  if ( i  =  {  .0.  } ,  .0.  ,  ( iota_ g  e.  ( i  i^i 
M ) ( D `
 g )  = inf ( ( D "
( i  \  {  .0.  } ) ) ,  RR ,  <  )
) ) ) )
3635fveq1d 6193 . 2  |-  ( R  e.  V  ->  ( G `  I )  =  ( ( i  e.  U  |->  if ( i  =  {  .0.  } ,  .0.  ,  (
iota_ g  e.  (
i  i^i  M )
( D `  g
)  = inf ( ( D " ( i 
\  {  .0.  }
) ) ,  RR ,  <  ) ) ) ) `  I ) )
37 eqeq1 2626 . . . 4  |-  ( i  =  I  ->  (
i  =  {  .0.  }  <-> 
I  =  {  .0.  } ) )
38 ineq1 3807 . . . . 5  |-  ( i  =  I  ->  (
i  i^i  M )  =  ( I  i^i 
M ) )
39 difeq1 3721 . . . . . . . 8  |-  ( i  =  I  ->  (
i  \  {  .0.  } )  =  ( I 
\  {  .0.  }
) )
4039imaeq2d 5466 . . . . . . 7  |-  ( i  =  I  ->  ( D " ( i  \  {  .0.  } ) )  =  ( D "
( I  \  {  .0.  } ) ) )
4140infeq1d 8383 . . . . . 6  |-  ( i  =  I  -> inf ( ( D " ( i 
\  {  .0.  }
) ) ,  RR ,  <  )  = inf (
( D " (
I  \  {  .0.  } ) ) ,  RR ,  <  ) )
4241eqeq2d 2632 . . . . 5  |-  ( i  =  I  ->  (
( D `  g
)  = inf ( ( D " ( i 
\  {  .0.  }
) ) ,  RR ,  <  )  <->  ( D `  g )  = inf (
( D " (
I  \  {  .0.  } ) ) ,  RR ,  <  ) ) )
4338, 42riotaeqbidv 6614 . . . 4  |-  ( i  =  I  ->  ( iota_ g  e.  ( i  i^i  M ) ( D `  g )  = inf ( ( D
" ( i  \  {  .0.  } ) ) ,  RR ,  <  ) )  =  ( iota_ g  e.  ( I  i^i 
M ) ( D `
 g )  = inf ( ( D "
( I  \  {  .0.  } ) ) ,  RR ,  <  )
) )
4437, 43ifbieq2d 4111 . . 3  |-  ( i  =  I  ->  if ( i  =  {  .0.  } ,  .0.  , 
( iota_ g  e.  ( i  i^i  M ) ( D `  g
)  = inf ( ( D " ( i 
\  {  .0.  }
) ) ,  RR ,  <  ) ) )  =  if ( I  =  {  .0.  } ,  .0.  ,  ( iota_ g  e.  ( I  i^i 
M ) ( D `
 g )  = inf ( ( D "
( I  \  {  .0.  } ) ) ,  RR ,  <  )
) ) )
45 eqid 2622 . . 3  |-  ( i  e.  U  |->  if ( i  =  {  .0.  } ,  .0.  ,  (
iota_ g  e.  (
i  i^i  M )
( D `  g
)  = inf ( ( D " ( i 
\  {  .0.  }
) ) ,  RR ,  <  ) ) ) )  =  ( i  e.  U  |->  if ( i  =  {  .0.  } ,  .0.  ,  (
iota_ g  e.  (
i  i^i  M )
( D `  g
)  = inf ( ( D " ( i 
\  {  .0.  }
) ) ,  RR ,  <  ) ) ) )
46 fvex 6201 . . . . 5  |-  ( 0g
`  P )  e. 
_V
4710, 46eqeltri 2697 . . . 4  |-  .0.  e.  _V
48 riotaex 6615 . . . 4  |-  ( iota_ g  e.  ( I  i^i 
M ) ( D `
 g )  = inf ( ( D "
( I  \  {  .0.  } ) ) ,  RR ,  <  )
)  e.  _V
4947, 48ifex 4156 . . 3  |-  if ( I  =  {  .0.  } ,  .0.  ,  (
iota_ g  e.  (
I  i^i  M )
( D `  g
)  = inf ( ( D " ( I 
\  {  .0.  }
) ) ,  RR ,  <  ) ) )  e.  _V
5044, 45, 49fvmpt 6282 . 2  |-  ( I  e.  U  ->  (
( i  e.  U  |->  if ( i  =  {  .0.  } ,  .0.  ,  ( iota_ g  e.  ( i  i^i  M
) ( D `  g )  = inf (
( D " (
i  \  {  .0.  } ) ) ,  RR ,  <  ) ) ) ) `  I )  =  if ( I  =  {  .0.  } ,  .0.  ,  ( iota_ g  e.  ( I  i^i 
M ) ( D `
 g )  = inf ( ( D "
( I  \  {  .0.  } ) ) ,  RR ,  <  )
) ) )
5136, 50sylan9eq 2676 1  |-  ( ( R  e.  V  /\  I  e.  U )  ->  ( G `  I
)  =  if ( I  =  {  .0.  } ,  .0.  ,  (
iota_ g  e.  (
I  i^i  M )
( D `  g
)  = inf ( ( D " ( I 
\  {  .0.  }
) ) ,  RR ,  <  ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    \ cdif 3571    i^i cin 3573   ifcif 4086   {csn 4177    |-> cmpt 4729   "cima 5117   ` cfv 5888   iota_crio 6610  infcinf 8347   RRcr 9935    < clt 10074   0gc0g 16100  LIdealclidl 19170  Poly1cpl1 19547   deg1 cdg1 23814  Monic1pcmn1 23885  idlGen1pcig1p 23889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-sup 8348  df-inf 8349  df-ig1p 23894
This theorem is referenced by:  ig1pval2  23933  ig1pval3  23934
  Copyright terms: Public domain W3C validator