| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > indiscld | Structured version Visualization version Unicode version | ||
| Description: The closed sets of an indiscrete topology. (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| indiscld |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indistop 20806 |
. . . . 5
| |
| 2 | indisuni 20807 |
. . . . . 6
| |
| 3 | 2 | iscld 20831 |
. . . . 5
|
| 4 | 1, 3 | ax-mp 5 |
. . . 4
|
| 5 | simpl 473 |
. . . . . 6
| |
| 6 | dfss4 3858 |
. . . . . 6
| |
| 7 | 5, 6 | sylib 208 |
. . . . 5
|
| 8 | simpr 477 |
. . . . . . 7
| |
| 9 | indislem 20804 |
. . . . . . 7
| |
| 10 | 8, 9 | syl6eleqr 2712 |
. . . . . 6
|
| 11 | elpri 4197 |
. . . . . 6
| |
| 12 | difeq2 3722 |
. . . . . . . . 9
| |
| 13 | dif0 3950 |
. . . . . . . . 9
| |
| 14 | 12, 13 | syl6eq 2672 |
. . . . . . . 8
|
| 15 | fvex 6201 |
. . . . . . . . . 10
| |
| 16 | 15 | prid2 4298 |
. . . . . . . . 9
|
| 17 | 16, 9 | eleqtri 2699 |
. . . . . . . 8
|
| 18 | 14, 17 | syl6eqel 2709 |
. . . . . . 7
|
| 19 | difeq2 3722 |
. . . . . . . . 9
| |
| 20 | difid 3948 |
. . . . . . . . 9
| |
| 21 | 19, 20 | syl6eq 2672 |
. . . . . . . 8
|
| 22 | 0ex 4790 |
. . . . . . . . 9
| |
| 23 | 22 | prid1 4297 |
. . . . . . . 8
|
| 24 | 21, 23 | syl6eqel 2709 |
. . . . . . 7
|
| 25 | 18, 24 | jaoi 394 |
. . . . . 6
|
| 26 | 10, 11, 25 | 3syl 18 |
. . . . 5
|
| 27 | 7, 26 | eqeltrrd 2702 |
. . . 4
|
| 28 | 4, 27 | sylbi 207 |
. . 3
|
| 29 | 28 | ssriv 3607 |
. 2
|
| 30 | 0cld 20842 |
. . . . 5
| |
| 31 | 1, 30 | ax-mp 5 |
. . . 4
|
| 32 | 2 | topcld 20839 |
. . . . 5
|
| 33 | 1, 32 | ax-mp 5 |
. . . 4
|
| 34 | prssi 4353 |
. . . 4
| |
| 35 | 31, 33, 34 | mp2an 708 |
. . 3
|
| 36 | 9, 35 | eqsstr3i 3636 |
. 2
|
| 37 | 29, 36 | eqssi 3619 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-top 20699 df-topon 20716 df-cld 20823 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |