| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iota5 | Structured version Visualization version Unicode version | ||
| Description: A method for computing iota. (Contributed by NM, 17-Sep-2013.) |
| Ref | Expression |
|---|---|
| iota5.1 |
|
| Ref | Expression |
|---|---|
| iota5 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iota5.1 |
. . 3
| |
| 2 | 1 | alrimiv 1855 |
. 2
|
| 3 | eqeq2 2633 |
. . . . . . 7
| |
| 4 | 3 | bibi2d 332 |
. . . . . 6
|
| 5 | 4 | albidv 1849 |
. . . . 5
|
| 6 | eqeq2 2633 |
. . . . 5
| |
| 7 | 5, 6 | imbi12d 334 |
. . . 4
|
| 8 | iotaval 5862 |
. . . 4
| |
| 9 | 7, 8 | vtoclg 3266 |
. . 3
|
| 10 | 9 | adantl 482 |
. 2
|
| 11 | 2, 10 | mpd 15 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rex 2918 df-v 3202 df-sbc 3436 df-un 3579 df-sn 4178 df-pr 4180 df-uni 4437 df-iota 5851 |
| This theorem is referenced by: isf32lem9 9183 rlimdm 14282 fsum 14451 fprod 14671 gsumval2a 17279 dchrptlem1 24989 lgsdchrval 25079 rlimdmafv 41257 |
| Copyright terms: Public domain | W3C validator |