| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isassad | Structured version Visualization version Unicode version | ||
| Description: Sufficient condition for being an associative algebra. (Contributed by Mario Carneiro, 5-Dec-2014.) |
| Ref | Expression |
|---|---|
| isassad.v |
|
| isassad.f |
|
| isassad.b |
|
| isassad.s |
|
| isassad.t |
|
| isassad.1 |
|
| isassad.2 |
|
| isassad.3 |
|
| isassad.4 |
|
| isassad.5 |
|
| Ref | Expression |
|---|---|
| isassad |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isassad.1 |
. . 3
| |
| 2 | isassad.2 |
. . 3
| |
| 3 | isassad.f |
. . . 4
| |
| 4 | isassad.3 |
. . . 4
| |
| 5 | 3, 4 | eqeltrrd 2702 |
. . 3
|
| 6 | 1, 2, 5 | 3jca 1242 |
. 2
|
| 7 | isassad.4 |
. . . . 5
| |
| 8 | isassad.5 |
. . . . 5
| |
| 9 | 7, 8 | jca 554 |
. . . 4
|
| 10 | 9 | ralrimivvva 2972 |
. . 3
|
| 11 | isassad.b |
. . . . 5
| |
| 12 | 3 | fveq2d 6195 |
. . . . 5
|
| 13 | 11, 12 | eqtrd 2656 |
. . . 4
|
| 14 | isassad.v |
. . . . 5
| |
| 15 | isassad.t |
. . . . . . . . 9
| |
| 16 | isassad.s |
. . . . . . . . . 10
| |
| 17 | 16 | oveqd 6667 |
. . . . . . . . 9
|
| 18 | eqidd 2623 |
. . . . . . . . 9
| |
| 19 | 15, 17, 18 | oveq123d 6671 |
. . . . . . . 8
|
| 20 | eqidd 2623 |
. . . . . . . . 9
| |
| 21 | 15 | oveqd 6667 |
. . . . . . . . 9
|
| 22 | 16, 20, 21 | oveq123d 6671 |
. . . . . . . 8
|
| 23 | 19, 22 | eqeq12d 2637 |
. . . . . . 7
|
| 24 | eqidd 2623 |
. . . . . . . . 9
| |
| 25 | 16 | oveqd 6667 |
. . . . . . . . 9
|
| 26 | 15, 24, 25 | oveq123d 6671 |
. . . . . . . 8
|
| 27 | 26, 22 | eqeq12d 2637 |
. . . . . . 7
|
| 28 | 23, 27 | anbi12d 747 |
. . . . . 6
|
| 29 | 14, 28 | raleqbidv 3152 |
. . . . 5
|
| 30 | 14, 29 | raleqbidv 3152 |
. . . 4
|
| 31 | 13, 30 | raleqbidv 3152 |
. . 3
|
| 32 | 10, 31 | mpbid 222 |
. 2
|
| 33 | eqid 2622 |
. . 3
| |
| 34 | eqid 2622 |
. . 3
| |
| 35 | eqid 2622 |
. . 3
| |
| 36 | eqid 2622 |
. . 3
| |
| 37 | eqid 2622 |
. . 3
| |
| 38 | 33, 34, 35, 36, 37 | isassa 19315 |
. 2
|
| 39 | 6, 32, 38 | sylanbrc 698 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-nul 4789 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 df-ov 6653 df-assa 19312 |
| This theorem is referenced by: issubassa 19324 sraassa 19325 psrassa 19414 zlmassa 19872 matassa 20250 mendassa 37764 |
| Copyright terms: Public domain | W3C validator |