MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sraassa Structured version   Visualization version   Unicode version

Theorem sraassa 19325
Description: The subring algebra over a commutative ring is an associative algebra. (Contributed by Mario Carneiro, 6-Oct-2015.)
Hypothesis
Ref Expression
sraassa.a  |-  A  =  ( (subringAlg  `  W ) `
 S )
Assertion
Ref Expression
sraassa  |-  ( ( W  e.  CRing  /\  S  e.  (SubRing `  W )
)  ->  A  e. AssAlg )

Proof of Theorem sraassa
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sraassa.a . . . 4  |-  A  =  ( (subringAlg  `  W ) `
 S )
21a1i 11 . . 3  |-  ( ( W  e.  CRing  /\  S  e.  (SubRing `  W )
)  ->  A  =  ( (subringAlg  `  W ) `  S ) )
3 eqid 2622 . . . . 5  |-  ( Base `  W )  =  (
Base `  W )
43subrgss 18781 . . . 4  |-  ( S  e.  (SubRing `  W
)  ->  S  C_  ( Base `  W ) )
54adantl 482 . . 3  |-  ( ( W  e.  CRing  /\  S  e.  (SubRing `  W )
)  ->  S  C_  ( Base `  W ) )
62, 5srabase 19178 . 2  |-  ( ( W  e.  CRing  /\  S  e.  (SubRing `  W )
)  ->  ( Base `  W )  =  (
Base `  A )
)
72, 5srasca 19181 . 2  |-  ( ( W  e.  CRing  /\  S  e.  (SubRing `  W )
)  ->  ( Ws  S
)  =  (Scalar `  A ) )
8 eqid 2622 . . . 4  |-  ( Ws  S )  =  ( Ws  S )
98subrgbas 18789 . . 3  |-  ( S  e.  (SubRing `  W
)  ->  S  =  ( Base `  ( Ws  S
) ) )
109adantl 482 . 2  |-  ( ( W  e.  CRing  /\  S  e.  (SubRing `  W )
)  ->  S  =  ( Base `  ( Ws  S
) ) )
112, 5sravsca 19182 . 2  |-  ( ( W  e.  CRing  /\  S  e.  (SubRing `  W )
)  ->  ( .r `  W )  =  ( .s `  A ) )
122, 5sramulr 19180 . 2  |-  ( ( W  e.  CRing  /\  S  e.  (SubRing `  W )
)  ->  ( .r `  W )  =  ( .r `  A ) )
131sralmod 19187 . . 3  |-  ( S  e.  (SubRing `  W
)  ->  A  e.  LMod )
1413adantl 482 . 2  |-  ( ( W  e.  CRing  /\  S  e.  (SubRing `  W )
)  ->  A  e.  LMod )
15 crngring 18558 . . . 4  |-  ( W  e.  CRing  ->  W  e.  Ring )
1615adantr 481 . . 3  |-  ( ( W  e.  CRing  /\  S  e.  (SubRing `  W )
)  ->  W  e.  Ring )
17 eqidd 2623 . . . 4  |-  ( ( W  e.  CRing  /\  S  e.  (SubRing `  W )
)  ->  ( Base `  W )  =  (
Base `  W )
)
182, 5sraaddg 19179 . . . . 5  |-  ( ( W  e.  CRing  /\  S  e.  (SubRing `  W )
)  ->  ( +g  `  W )  =  ( +g  `  A ) )
1918oveqdr 6674 . . . 4  |-  ( ( ( W  e.  CRing  /\  S  e.  (SubRing `  W
) )  /\  (
x  e.  ( Base `  W )  /\  y  e.  ( Base `  W
) ) )  -> 
( x ( +g  `  W ) y )  =  ( x ( +g  `  A ) y ) )
2012oveqdr 6674 . . . 4  |-  ( ( ( W  e.  CRing  /\  S  e.  (SubRing `  W
) )  /\  (
x  e.  ( Base `  W )  /\  y  e.  ( Base `  W
) ) )  -> 
( x ( .r
`  W ) y )  =  ( x ( .r `  A
) y ) )
2117, 6, 19, 20ringpropd 18582 . . 3  |-  ( ( W  e.  CRing  /\  S  e.  (SubRing `  W )
)  ->  ( W  e.  Ring  <->  A  e.  Ring ) )
2216, 21mpbid 222 . 2  |-  ( ( W  e.  CRing  /\  S  e.  (SubRing `  W )
)  ->  A  e.  Ring )
238subrgcrng 18784 . 2  |-  ( ( W  e.  CRing  /\  S  e.  (SubRing `  W )
)  ->  ( Ws  S
)  e.  CRing )
2416adantr 481 . . 3  |-  ( ( ( W  e.  CRing  /\  S  e.  (SubRing `  W
) )  /\  (
x  e.  S  /\  y  e.  ( Base `  W )  /\  z  e.  ( Base `  W
) ) )  ->  W  e.  Ring )
255adantr 481 . . . 4  |-  ( ( ( W  e.  CRing  /\  S  e.  (SubRing `  W
) )  /\  (
x  e.  S  /\  y  e.  ( Base `  W )  /\  z  e.  ( Base `  W
) ) )  ->  S  C_  ( Base `  W
) )
26 simpr1 1067 . . . 4  |-  ( ( ( W  e.  CRing  /\  S  e.  (SubRing `  W
) )  /\  (
x  e.  S  /\  y  e.  ( Base `  W )  /\  z  e.  ( Base `  W
) ) )  ->  x  e.  S )
2725, 26sseldd 3604 . . 3  |-  ( ( ( W  e.  CRing  /\  S  e.  (SubRing `  W
) )  /\  (
x  e.  S  /\  y  e.  ( Base `  W )  /\  z  e.  ( Base `  W
) ) )  ->  x  e.  ( Base `  W ) )
28 simpr2 1068 . . 3  |-  ( ( ( W  e.  CRing  /\  S  e.  (SubRing `  W
) )  /\  (
x  e.  S  /\  y  e.  ( Base `  W )  /\  z  e.  ( Base `  W
) ) )  -> 
y  e.  ( Base `  W ) )
29 simpr3 1069 . . 3  |-  ( ( ( W  e.  CRing  /\  S  e.  (SubRing `  W
) )  /\  (
x  e.  S  /\  y  e.  ( Base `  W )  /\  z  e.  ( Base `  W
) ) )  -> 
z  e.  ( Base `  W ) )
30 eqid 2622 . . . 4  |-  ( .r
`  W )  =  ( .r `  W
)
313, 30ringass 18564 . . 3  |-  ( ( W  e.  Ring  /\  (
x  e.  ( Base `  W )  /\  y  e.  ( Base `  W
)  /\  z  e.  ( Base `  W )
) )  ->  (
( x ( .r
`  W ) y ) ( .r `  W ) z )  =  ( x ( .r `  W ) ( y ( .r
`  W ) z ) ) )
3224, 27, 28, 29, 31syl13anc 1328 . 2  |-  ( ( ( W  e.  CRing  /\  S  e.  (SubRing `  W
) )  /\  (
x  e.  S  /\  y  e.  ( Base `  W )  /\  z  e.  ( Base `  W
) ) )  -> 
( ( x ( .r `  W ) y ) ( .r
`  W ) z )  =  ( x ( .r `  W
) ( y ( .r `  W ) z ) ) )
33 eqid 2622 . . . . 5  |-  (mulGrp `  W )  =  (mulGrp `  W )
3433crngmgp 18555 . . . 4  |-  ( W  e.  CRing  ->  (mulGrp `  W
)  e. CMnd )
3534ad2antrr 762 . . 3  |-  ( ( ( W  e.  CRing  /\  S  e.  (SubRing `  W
) )  /\  (
x  e.  S  /\  y  e.  ( Base `  W )  /\  z  e.  ( Base `  W
) ) )  -> 
(mulGrp `  W )  e. CMnd )
3633, 3mgpbas 18495 . . . 4  |-  ( Base `  W )  =  (
Base `  (mulGrp `  W
) )
3733, 30mgpplusg 18493 . . . 4  |-  ( .r
`  W )  =  ( +g  `  (mulGrp `  W ) )
3836, 37cmn12 18213 . . 3  |-  ( ( (mulGrp `  W )  e. CMnd  /\  ( y  e.  ( Base `  W
)  /\  x  e.  ( Base `  W )  /\  z  e.  ( Base `  W ) ) )  ->  ( y
( .r `  W
) ( x ( .r `  W ) z ) )  =  ( x ( .r
`  W ) ( y ( .r `  W ) z ) ) )
3935, 28, 27, 29, 38syl13anc 1328 . 2  |-  ( ( ( W  e.  CRing  /\  S  e.  (SubRing `  W
) )  /\  (
x  e.  S  /\  y  e.  ( Base `  W )  /\  z  e.  ( Base `  W
) ) )  -> 
( y ( .r
`  W ) ( x ( .r `  W ) z ) )  =  ( x ( .r `  W
) ( y ( .r `  W ) z ) ) )
406, 7, 10, 11, 12, 14, 22, 23, 32, 39isassad 19323 1  |-  ( ( W  e.  CRing  /\  S  e.  (SubRing `  W )
)  ->  A  e. AssAlg )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    C_ wss 3574   ` cfv 5888  (class class class)co 6650   Basecbs 15857   ↾s cress 15858   +g cplusg 15941   .rcmulr 15942  CMndccmn 18193  mulGrpcmgp 18489   Ringcrg 18547   CRingccrg 18548  SubRingcsubrg 18776   LModclmod 18863  subringAlg csra 19168  AssAlgcasa 19309
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-subg 17591  df-cmn 18195  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-subrg 18778  df-lmod 18865  df-sra 19172  df-assa 19312
This theorem is referenced by:  rlmassa  19326
  Copyright terms: Public domain W3C validator