MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  assa2ass Structured version   Visualization version   Unicode version

Theorem assa2ass 19322
Description: Left- and right-associative property of an associative algebra. Notice that the scalars are commuted! (Contributed by AV, 14-Aug-2019.)
Hypotheses
Ref Expression
assa2ass.v  |-  V  =  ( Base `  W
)
assa2ass.f  |-  F  =  (Scalar `  W )
assa2ass.b  |-  B  =  ( Base `  F
)
assa2ass.m  |-  .*  =  ( .r `  F )
assa2ass.s  |-  .x.  =  ( .s `  W )
assa2ass.t  |-  .X.  =  ( .r `  W )
Assertion
Ref Expression
assa2ass  |-  ( ( W  e. AssAlg  /\  ( A  e.  B  /\  C  e.  B )  /\  ( X  e.  V  /\  Y  e.  V
) )  ->  (
( A  .x.  X
)  .X.  ( C  .x.  Y ) )  =  ( ( C  .*  A )  .x.  ( X  .X.  Y ) ) )

Proof of Theorem assa2ass
StepHypRef Expression
1 simp1 1061 . . 3  |-  ( ( W  e. AssAlg  /\  ( A  e.  B  /\  C  e.  B )  /\  ( X  e.  V  /\  Y  e.  V
) )  ->  W  e. AssAlg )
2 simpr 477 . . . 4  |-  ( ( A  e.  B  /\  C  e.  B )  ->  C  e.  B )
323ad2ant2 1083 . . 3  |-  ( ( W  e. AssAlg  /\  ( A  e.  B  /\  C  e.  B )  /\  ( X  e.  V  /\  Y  e.  V
) )  ->  C  e.  B )
4 assalmod 19319 . . . 4  |-  ( W  e. AssAlg  ->  W  e.  LMod )
5 simpl 473 . . . 4  |-  ( ( A  e.  B  /\  C  e.  B )  ->  A  e.  B )
6 simpl 473 . . . 4  |-  ( ( X  e.  V  /\  Y  e.  V )  ->  X  e.  V )
7 assa2ass.v . . . . 5  |-  V  =  ( Base `  W
)
8 assa2ass.f . . . . 5  |-  F  =  (Scalar `  W )
9 assa2ass.s . . . . 5  |-  .x.  =  ( .s `  W )
10 assa2ass.b . . . . 5  |-  B  =  ( Base `  F
)
117, 8, 9, 10lmodvscl 18880 . . . 4  |-  ( ( W  e.  LMod  /\  A  e.  B  /\  X  e.  V )  ->  ( A  .x.  X )  e.  V )
124, 5, 6, 11syl3an 1368 . . 3  |-  ( ( W  e. AssAlg  /\  ( A  e.  B  /\  C  e.  B )  /\  ( X  e.  V  /\  Y  e.  V
) )  ->  ( A  .x.  X )  e.  V )
13 simpr 477 . . . 4  |-  ( ( X  e.  V  /\  Y  e.  V )  ->  Y  e.  V )
14133ad2ant3 1084 . . 3  |-  ( ( W  e. AssAlg  /\  ( A  e.  B  /\  C  e.  B )  /\  ( X  e.  V  /\  Y  e.  V
) )  ->  Y  e.  V )
15 assa2ass.t . . . 4  |-  .X.  =  ( .r `  W )
167, 8, 10, 9, 15assaassr 19318 . . 3  |-  ( ( W  e. AssAlg  /\  ( C  e.  B  /\  ( A  .x.  X )  e.  V  /\  Y  e.  V ) )  -> 
( ( A  .x.  X )  .X.  ( C  .x.  Y ) )  =  ( C  .x.  ( ( A  .x.  X )  .X.  Y
) ) )
171, 3, 12, 14, 16syl13anc 1328 . 2  |-  ( ( W  e. AssAlg  /\  ( A  e.  B  /\  C  e.  B )  /\  ( X  e.  V  /\  Y  e.  V
) )  ->  (
( A  .x.  X
)  .X.  ( C  .x.  Y ) )  =  ( C  .x.  (
( A  .x.  X
)  .X.  Y )
) )
187, 8, 10, 9, 15assaass 19317 . . . 4  |-  ( ( W  e. AssAlg  /\  ( C  e.  B  /\  ( A  .x.  X )  e.  V  /\  Y  e.  V ) )  -> 
( ( C  .x.  ( A  .x.  X ) )  .X.  Y )  =  ( C  .x.  ( ( A  .x.  X )  .X.  Y
) ) )
1918eqcomd 2628 . . 3  |-  ( ( W  e. AssAlg  /\  ( C  e.  B  /\  ( A  .x.  X )  e.  V  /\  Y  e.  V ) )  -> 
( C  .x.  (
( A  .x.  X
)  .X.  Y )
)  =  ( ( C  .x.  ( A 
.x.  X ) ) 
.X.  Y ) )
201, 3, 12, 14, 19syl13anc 1328 . 2  |-  ( ( W  e. AssAlg  /\  ( A  e.  B  /\  C  e.  B )  /\  ( X  e.  V  /\  Y  e.  V
) )  ->  ( C  .x.  ( ( A 
.x.  X )  .X.  Y ) )  =  ( ( C  .x.  ( A  .x.  X ) )  .X.  Y )
)
2143ad2ant1 1082 . . . 4  |-  ( ( W  e. AssAlg  /\  ( A  e.  B  /\  C  e.  B )  /\  ( X  e.  V  /\  Y  e.  V
) )  ->  W  e.  LMod )
2253ad2ant2 1083 . . . 4  |-  ( ( W  e. AssAlg  /\  ( A  e.  B  /\  C  e.  B )  /\  ( X  e.  V  /\  Y  e.  V
) )  ->  A  e.  B )
2363ad2ant3 1084 . . . 4  |-  ( ( W  e. AssAlg  /\  ( A  e.  B  /\  C  e.  B )  /\  ( X  e.  V  /\  Y  e.  V
) )  ->  X  e.  V )
24 assa2ass.m . . . . . . 7  |-  .*  =  ( .r `  F )
257, 8, 9, 10, 24lmodvsass 18888 . . . . . 6  |-  ( ( W  e.  LMod  /\  ( C  e.  B  /\  A  e.  B  /\  X  e.  V )
)  ->  ( ( C  .*  A )  .x.  X )  =  ( C  .x.  ( A 
.x.  X ) ) )
2625eqcomd 2628 . . . . 5  |-  ( ( W  e.  LMod  /\  ( C  e.  B  /\  A  e.  B  /\  X  e.  V )
)  ->  ( C  .x.  ( A  .x.  X
) )  =  ( ( C  .*  A
)  .x.  X )
)
2726oveq1d 6665 . . . 4  |-  ( ( W  e.  LMod  /\  ( C  e.  B  /\  A  e.  B  /\  X  e.  V )
)  ->  ( ( C  .x.  ( A  .x.  X ) )  .X.  Y )  =  ( ( ( C  .*  A )  .x.  X
)  .X.  Y )
)
2821, 3, 22, 23, 27syl13anc 1328 . . 3  |-  ( ( W  e. AssAlg  /\  ( A  e.  B  /\  C  e.  B )  /\  ( X  e.  V  /\  Y  e.  V
) )  ->  (
( C  .x.  ( A  .x.  X ) ) 
.X.  Y )  =  ( ( ( C  .*  A )  .x.  X )  .X.  Y
) )
298assasca 19321 . . . . . . . 8  |-  ( W  e. AssAlg  ->  F  e.  CRing )
30 crngring 18558 . . . . . . . 8  |-  ( F  e.  CRing  ->  F  e.  Ring )
3129, 30syl 17 . . . . . . 7  |-  ( W  e. AssAlg  ->  F  e.  Ring )
3231adantr 481 . . . . . 6  |-  ( ( W  e. AssAlg  /\  ( A  e.  B  /\  C  e.  B )
)  ->  F  e.  Ring )
332adantl 482 . . . . . 6  |-  ( ( W  e. AssAlg  /\  ( A  e.  B  /\  C  e.  B )
)  ->  C  e.  B )
345adantl 482 . . . . . 6  |-  ( ( W  e. AssAlg  /\  ( A  e.  B  /\  C  e.  B )
)  ->  A  e.  B )
3510, 24ringcl 18561 . . . . . 6  |-  ( ( F  e.  Ring  /\  C  e.  B  /\  A  e.  B )  ->  ( C  .*  A )  e.  B )
3632, 33, 34, 35syl3anc 1326 . . . . 5  |-  ( ( W  e. AssAlg  /\  ( A  e.  B  /\  C  e.  B )
)  ->  ( C  .*  A )  e.  B
)
37363adant3 1081 . . . 4  |-  ( ( W  e. AssAlg  /\  ( A  e.  B  /\  C  e.  B )  /\  ( X  e.  V  /\  Y  e.  V
) )  ->  ( C  .*  A )  e.  B )
387, 8, 10, 9, 15assaass 19317 . . . 4  |-  ( ( W  e. AssAlg  /\  (
( C  .*  A
)  e.  B  /\  X  e.  V  /\  Y  e.  V )
)  ->  ( (
( C  .*  A
)  .x.  X )  .X.  Y )  =  ( ( C  .*  A
)  .x.  ( X  .X.  Y ) ) )
391, 37, 23, 14, 38syl13anc 1328 . . 3  |-  ( ( W  e. AssAlg  /\  ( A  e.  B  /\  C  e.  B )  /\  ( X  e.  V  /\  Y  e.  V
) )  ->  (
( ( C  .*  A )  .x.  X
)  .X.  Y )  =  ( ( C  .*  A )  .x.  ( X  .X.  Y ) ) )
4028, 39eqtrd 2656 . 2  |-  ( ( W  e. AssAlg  /\  ( A  e.  B  /\  C  e.  B )  /\  ( X  e.  V  /\  Y  e.  V
) )  ->  (
( C  .x.  ( A  .x.  X ) ) 
.X.  Y )  =  ( ( C  .*  A )  .x.  ( X  .X.  Y ) ) )
4117, 20, 403eqtrd 2660 1  |-  ( ( W  e. AssAlg  /\  ( A  e.  B  /\  C  e.  B )  /\  ( X  e.  V  /\  Y  e.  V
) )  ->  (
( A  .x.  X
)  .X.  ( C  .x.  Y ) )  =  ( ( C  .*  A )  .x.  ( X  .X.  Y ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   ` cfv 5888  (class class class)co 6650   Basecbs 15857   .rcmulr 15942  Scalarcsca 15944   .scvsca 15945   Ringcrg 18547   CRingccrg 18548   LModclmod 18863  AssAlgcasa 19309
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mgp 18490  df-ring 18549  df-cring 18550  df-lmod 18865  df-assa 19312
This theorem is referenced by:  cpmadugsumlemB  20679
  Copyright terms: Public domain W3C validator