MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isipodrs Structured version   Visualization version   Unicode version

Theorem isipodrs 17161
Description: Condition for a family of sets to be directed by inclusion. (Contributed by Stefan O'Rear, 2-Apr-2015.)
Assertion
Ref Expression
isipodrs  |-  ( (toInc `  A )  e. Dirset  <->  ( A  e.  _V  /\  A  =/=  (/)  /\  A. x  e.  A  A. y  e.  A  E. z  e.  A  ( x  u.  y )  C_  z
) )
Distinct variable group:    z, A, x, y

Proof of Theorem isipodrs
StepHypRef Expression
1 eqid 2622 . . . . 5  |-  ( Base `  (toInc `  A )
)  =  ( Base `  (toInc `  A )
)
21drsbn0 16937 . . . 4  |-  ( (toInc `  A )  e. Dirset  ->  (
Base `  (toInc `  A
) )  =/=  (/) )
32neneqd 2799 . . 3  |-  ( (toInc `  A )  e. Dirset  ->  -.  ( Base `  (toInc `  A ) )  =  (/) )
4 fvprc 6185 . . . . 5  |-  ( -.  A  e.  _V  ->  (toInc `  A )  =  (/) )
54fveq2d 6195 . . . 4  |-  ( -.  A  e.  _V  ->  (
Base `  (toInc `  A
) )  =  (
Base `  (/) ) )
6 base0 15912 . . . 4  |-  (/)  =  (
Base `  (/) )
75, 6syl6eqr 2674 . . 3  |-  ( -.  A  e.  _V  ->  (
Base `  (toInc `  A
) )  =  (/) )
83, 7nsyl2 142 . 2  |-  ( (toInc `  A )  e. Dirset  ->  A  e.  _V )
9 simp1 1061 . 2  |-  ( ( A  e.  _V  /\  A  =/=  (/)  /\  A. x  e.  A  A. y  e.  A  E. z  e.  A  ( x  u.  y )  C_  z
)  ->  A  e.  _V )
10 eqid 2622 . . . 4  |-  ( le
`  (toInc `  A
) )  =  ( le `  (toInc `  A ) )
111, 10isdrs 16934 . . 3  |-  ( (toInc `  A )  e. Dirset  <->  ( (toInc `  A )  e.  Preset  /\  ( Base `  (toInc `  A ) )  =/=  (/)  /\  A. x  e.  ( Base `  (toInc `  A ) ) A. y  e.  ( Base `  (toInc `  A )
) E. z  e.  ( Base `  (toInc `  A ) ) ( x ( le `  (toInc `  A ) ) z  /\  y ( le `  (toInc `  A ) ) z ) ) )
12 eqid 2622 . . . . . . . 8  |-  (toInc `  A )  =  (toInc `  A )
1312ipopos 17160 . . . . . . 7  |-  (toInc `  A )  e.  Poset
14 posprs 16949 . . . . . . 7  |-  ( (toInc `  A )  e.  Poset  -> 
(toInc `  A )  e.  Preset  )
1513, 14mp1i 13 . . . . . 6  |-  ( A  e.  _V  ->  (toInc `  A )  e.  Preset  )
16 id 22 . . . . . 6  |-  ( A  e.  _V  ->  A  e.  _V )
1715, 162thd 255 . . . . 5  |-  ( A  e.  _V  ->  (
(toInc `  A )  e.  Preset 
<->  A  e.  _V )
)
1812ipobas 17155 . . . . . . 7  |-  ( A  e.  _V  ->  A  =  ( Base `  (toInc `  A ) ) )
19 neeq1 2856 . . . . . . . 8  |-  ( A  =  ( Base `  (toInc `  A ) )  -> 
( A  =/=  (/)  <->  ( Base `  (toInc `  A )
)  =/=  (/) ) )
20 rexeq 3139 . . . . . . . . . 10  |-  ( A  =  ( Base `  (toInc `  A ) )  -> 
( E. z  e.  A  ( x ( le `  (toInc `  A ) ) z  /\  y ( le
`  (toInc `  A
) ) z )  <->  E. z  e.  ( Base `  (toInc `  A
) ) ( x ( le `  (toInc `  A ) ) z  /\  y ( le
`  (toInc `  A
) ) z ) ) )
2120raleqbi1dv 3146 . . . . . . . . 9  |-  ( A  =  ( Base `  (toInc `  A ) )  -> 
( A. y  e.  A  E. z  e.  A  ( x ( le `  (toInc `  A ) ) z  /\  y ( le
`  (toInc `  A
) ) z )  <->  A. y  e.  ( Base `  (toInc `  A
) ) E. z  e.  ( Base `  (toInc `  A ) ) ( x ( le `  (toInc `  A ) ) z  /\  y ( le `  (toInc `  A ) ) z ) ) )
2221raleqbi1dv 3146 . . . . . . . 8  |-  ( A  =  ( Base `  (toInc `  A ) )  -> 
( A. x  e.  A  A. y  e.  A  E. z  e.  A  ( x ( le `  (toInc `  A ) ) z  /\  y ( le
`  (toInc `  A
) ) z )  <->  A. x  e.  ( Base `  (toInc `  A
) ) A. y  e.  ( Base `  (toInc `  A ) ) E. z  e.  ( Base `  (toInc `  A )
) ( x ( le `  (toInc `  A ) ) z  /\  y ( le
`  (toInc `  A
) ) z ) ) )
2319, 22anbi12d 747 . . . . . . 7  |-  ( A  =  ( Base `  (toInc `  A ) )  -> 
( ( A  =/=  (/)  /\  A. x  e.  A  A. y  e.  A  E. z  e.  A  ( x ( le `  (toInc `  A ) ) z  /\  y ( le
`  (toInc `  A
) ) z ) )  <->  ( ( Base `  (toInc `  A )
)  =/=  (/)  /\  A. x  e.  ( Base `  (toInc `  A )
) A. y  e.  ( Base `  (toInc `  A ) ) E. z  e.  ( Base `  (toInc `  A )
) ( x ( le `  (toInc `  A ) ) z  /\  y ( le
`  (toInc `  A
) ) z ) ) ) )
2418, 23syl 17 . . . . . 6  |-  ( A  e.  _V  ->  (
( A  =/=  (/)  /\  A. x  e.  A  A. y  e.  A  E. z  e.  A  (
x ( le `  (toInc `  A ) ) z  /\  y ( le `  (toInc `  A ) ) z ) )  <->  ( ( Base `  (toInc `  A
) )  =/=  (/)  /\  A. x  e.  ( Base `  (toInc `  A )
) A. y  e.  ( Base `  (toInc `  A ) ) E. z  e.  ( Base `  (toInc `  A )
) ( x ( le `  (toInc `  A ) ) z  /\  y ( le
`  (toInc `  A
) ) z ) ) ) )
25 simpll 790 . . . . . . . . . . . 12  |-  ( ( ( A  e.  _V  /\  ( x  e.  A  /\  y  e.  A
) )  /\  z  e.  A )  ->  A  e.  _V )
26 simplrl 800 . . . . . . . . . . . 12  |-  ( ( ( A  e.  _V  /\  ( x  e.  A  /\  y  e.  A
) )  /\  z  e.  A )  ->  x  e.  A )
27 simpr 477 . . . . . . . . . . . 12  |-  ( ( ( A  e.  _V  /\  ( x  e.  A  /\  y  e.  A
) )  /\  z  e.  A )  ->  z  e.  A )
2812, 10ipole 17158 . . . . . . . . . . . 12  |-  ( ( A  e.  _V  /\  x  e.  A  /\  z  e.  A )  ->  ( x ( le
`  (toInc `  A
) ) z  <->  x  C_  z
) )
2925, 26, 27, 28syl3anc 1326 . . . . . . . . . . 11  |-  ( ( ( A  e.  _V  /\  ( x  e.  A  /\  y  e.  A
) )  /\  z  e.  A )  ->  (
x ( le `  (toInc `  A ) ) z  <->  x  C_  z ) )
30 simplrr 801 . . . . . . . . . . . 12  |-  ( ( ( A  e.  _V  /\  ( x  e.  A  /\  y  e.  A
) )  /\  z  e.  A )  ->  y  e.  A )
3112, 10ipole 17158 . . . . . . . . . . . 12  |-  ( ( A  e.  _V  /\  y  e.  A  /\  z  e.  A )  ->  ( y ( le
`  (toInc `  A
) ) z  <->  y  C_  z ) )
3225, 30, 27, 31syl3anc 1326 . . . . . . . . . . 11  |-  ( ( ( A  e.  _V  /\  ( x  e.  A  /\  y  e.  A
) )  /\  z  e.  A )  ->  (
y ( le `  (toInc `  A ) ) z  <->  y  C_  z
) )
3329, 32anbi12d 747 . . . . . . . . . 10  |-  ( ( ( A  e.  _V  /\  ( x  e.  A  /\  y  e.  A
) )  /\  z  e.  A )  ->  (
( x ( le
`  (toInc `  A
) ) z  /\  y ( le `  (toInc `  A ) ) z )  <->  ( x  C_  z  /\  y  C_  z ) ) )
34 unss 3787 . . . . . . . . . 10  |-  ( ( x  C_  z  /\  y  C_  z )  <->  ( x  u.  y )  C_  z
)
3533, 34syl6bb 276 . . . . . . . . 9  |-  ( ( ( A  e.  _V  /\  ( x  e.  A  /\  y  e.  A
) )  /\  z  e.  A )  ->  (
( x ( le
`  (toInc `  A
) ) z  /\  y ( le `  (toInc `  A ) ) z )  <->  ( x  u.  y )  C_  z
) )
3635rexbidva 3049 . . . . . . . 8  |-  ( ( A  e.  _V  /\  ( x  e.  A  /\  y  e.  A
) )  ->  ( E. z  e.  A  ( x ( le
`  (toInc `  A
) ) z  /\  y ( le `  (toInc `  A ) ) z )  <->  E. z  e.  A  ( x  u.  y )  C_  z
) )
37362ralbidva 2988 . . . . . . 7  |-  ( A  e.  _V  ->  ( A. x  e.  A  A. y  e.  A  E. z  e.  A  ( x ( le
`  (toInc `  A
) ) z  /\  y ( le `  (toInc `  A ) ) z )  <->  A. x  e.  A  A. y  e.  A  E. z  e.  A  ( x  u.  y )  C_  z
) )
3837anbi2d 740 . . . . . 6  |-  ( A  e.  _V  ->  (
( A  =/=  (/)  /\  A. x  e.  A  A. y  e.  A  E. z  e.  A  (
x ( le `  (toInc `  A ) ) z  /\  y ( le `  (toInc `  A ) ) z ) )  <->  ( A  =/=  (/)  /\  A. x  e.  A  A. y  e.  A  E. z  e.  A  ( x  u.  y )  C_  z
) ) )
3924, 38bitr3d 270 . . . . 5  |-  ( A  e.  _V  ->  (
( ( Base `  (toInc `  A ) )  =/=  (/)  /\  A. x  e.  ( Base `  (toInc `  A ) ) A. y  e.  ( Base `  (toInc `  A )
) E. z  e.  ( Base `  (toInc `  A ) ) ( x ( le `  (toInc `  A ) ) z  /\  y ( le `  (toInc `  A ) ) z ) )  <->  ( A  =/=  (/)  /\  A. x  e.  A  A. y  e.  A  E. z  e.  A  ( x  u.  y )  C_  z
) ) )
4017, 39anbi12d 747 . . . 4  |-  ( A  e.  _V  ->  (
( (toInc `  A
)  e.  Preset  /\  (
( Base `  (toInc `  A
) )  =/=  (/)  /\  A. x  e.  ( Base `  (toInc `  A )
) A. y  e.  ( Base `  (toInc `  A ) ) E. z  e.  ( Base `  (toInc `  A )
) ( x ( le `  (toInc `  A ) ) z  /\  y ( le
`  (toInc `  A
) ) z ) ) )  <->  ( A  e.  _V  /\  ( A  =/=  (/)  /\  A. x  e.  A  A. y  e.  A  E. z  e.  A  ( x  u.  y )  C_  z
) ) ) )
41 3anass 1042 . . . 4  |-  ( ( (toInc `  A )  e.  Preset  /\  ( Base `  (toInc `  A )
)  =/=  (/)  /\  A. x  e.  ( Base `  (toInc `  A )
) A. y  e.  ( Base `  (toInc `  A ) ) E. z  e.  ( Base `  (toInc `  A )
) ( x ( le `  (toInc `  A ) ) z  /\  y ( le
`  (toInc `  A
) ) z ) )  <->  ( (toInc `  A )  e.  Preset  /\  ( ( Base `  (toInc `  A ) )  =/=  (/)  /\  A. x  e.  ( Base `  (toInc `  A ) ) A. y  e.  ( Base `  (toInc `  A )
) E. z  e.  ( Base `  (toInc `  A ) ) ( x ( le `  (toInc `  A ) ) z  /\  y ( le `  (toInc `  A ) ) z ) ) ) )
42 3anass 1042 . . . 4  |-  ( ( A  e.  _V  /\  A  =/=  (/)  /\  A. x  e.  A  A. y  e.  A  E. z  e.  A  ( x  u.  y )  C_  z
)  <->  ( A  e. 
_V  /\  ( A  =/=  (/)  /\  A. x  e.  A  A. y  e.  A  E. z  e.  A  ( x  u.  y )  C_  z
) ) )
4340, 41, 423bitr4g 303 . . 3  |-  ( A  e.  _V  ->  (
( (toInc `  A
)  e.  Preset  /\  ( Base `  (toInc `  A
) )  =/=  (/)  /\  A. x  e.  ( Base `  (toInc `  A )
) A. y  e.  ( Base `  (toInc `  A ) ) E. z  e.  ( Base `  (toInc `  A )
) ( x ( le `  (toInc `  A ) ) z  /\  y ( le
`  (toInc `  A
) ) z ) )  <->  ( A  e. 
_V  /\  A  =/=  (/) 
/\  A. x  e.  A  A. y  e.  A  E. z  e.  A  ( x  u.  y
)  C_  z )
) )
4411, 43syl5bb 272 . 2  |-  ( A  e.  _V  ->  (
(toInc `  A )  e. Dirset  <-> 
( A  e.  _V  /\  A  =/=  (/)  /\  A. x  e.  A  A. y  e.  A  E. z  e.  A  (
x  u.  y ) 
C_  z ) ) )
458, 9, 44pm5.21nii 368 1  |-  ( (toInc `  A )  e. Dirset  <->  ( A  e.  _V  /\  A  =/=  (/)  /\  A. x  e.  A  A. y  e.  A  E. z  e.  A  ( x  u.  y )  C_  z
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   _Vcvv 3200    u. cun 3572    C_ wss 3574   (/)c0 3915   class class class wbr 4653   ` cfv 5888   Basecbs 15857   lecple 15948    Preset cpreset 16926  Dirsetcdrs 16927   Posetcpo 16940  toInccipo 17151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-tset 15960  df-ple 15961  df-ocomp 15963  df-preset 16928  df-drs 16929  df-poset 16946  df-ipo 17152
This theorem is referenced by:  ipodrscl  17162  fpwipodrs  17164  ipodrsima  17165  nacsfix  37275
  Copyright terms: Public domain W3C validator