MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isf34lem2 Structured version   Visualization version   Unicode version

Theorem isf34lem2 9195
Description: Lemma for isfin3-4 9204. (Contributed by Stefan O'Rear, 7-Nov-2014.)
Hypothesis
Ref Expression
compss.a  |-  F  =  ( x  e.  ~P A  |->  ( A  \  x ) )
Assertion
Ref Expression
isf34lem2  |-  ( A  e.  V  ->  F : ~P A --> ~P A
)
Distinct variable groups:    x, A    x, V
Allowed substitution hint:    F( x)

Proof of Theorem isf34lem2
StepHypRef Expression
1 difss 3737 . . . 4  |-  ( A 
\  x )  C_  A
2 elpw2g 4827 . . . 4  |-  ( A  e.  V  ->  (
( A  \  x
)  e.  ~P A  <->  ( A  \  x ) 
C_  A ) )
31, 2mpbiri 248 . . 3  |-  ( A  e.  V  ->  ( A  \  x )  e. 
~P A )
43adantr 481 . 2  |-  ( ( A  e.  V  /\  x  e.  ~P A
)  ->  ( A  \  x )  e.  ~P A )
5 compss.a . 2  |-  F  =  ( x  e.  ~P A  |->  ( A  \  x ) )
64, 5fmptd 6385 1  |-  ( A  e.  V  ->  F : ~P A --> ~P A
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990    \ cdif 3571    C_ wss 3574   ~Pcpw 4158    |-> cmpt 4729   -->wf 5884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896
This theorem is referenced by:  isf34lem5  9200  isf34lem7  9201  isf34lem6  9202
  Copyright terms: Public domain W3C validator