| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isgrpinv | Structured version Visualization version Unicode version | ||
| Description: Properties showing that a
function |
| Ref | Expression |
|---|---|
| grpinv.b |
|
| grpinv.p |
|
| grpinv.u |
|
| grpinv.n |
|
| Ref | Expression |
|---|---|
| isgrpinv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinv.b |
. . . . . . . . . 10
| |
| 2 | grpinv.p |
. . . . . . . . . 10
| |
| 3 | grpinv.u |
. . . . . . . . . 10
| |
| 4 | grpinv.n |
. . . . . . . . . 10
| |
| 5 | 1, 2, 3, 4 | grpinvval 17461 |
. . . . . . . . 9
|
| 6 | 5 | ad2antlr 763 |
. . . . . . . 8
|
| 7 | simpr 477 |
. . . . . . . . 9
| |
| 8 | simpllr 799 |
. . . . . . . . . . 11
| |
| 9 | simplr 792 |
. . . . . . . . . . 11
| |
| 10 | 8, 9 | ffvelrnd 6360 |
. . . . . . . . . 10
|
| 11 | simplll 798 |
. . . . . . . . . . 11
| |
| 12 | 1, 2, 3 | grpinveu 17456 |
. . . . . . . . . . 11
|
| 13 | 11, 9, 12 | syl2anc 693 |
. . . . . . . . . 10
|
| 14 | oveq1 6657 |
. . . . . . . . . . . 12
| |
| 15 | 14 | eqeq1d 2624 |
. . . . . . . . . . 11
|
| 16 | 15 | riota2 6633 |
. . . . . . . . . 10
|
| 17 | 10, 13, 16 | syl2anc 693 |
. . . . . . . . 9
|
| 18 | 7, 17 | mpbid 222 |
. . . . . . . 8
|
| 19 | 6, 18 | eqtrd 2656 |
. . . . . . 7
|
| 20 | 19 | ex 450 |
. . . . . 6
|
| 21 | 20 | ralimdva 2962 |
. . . . 5
|
| 22 | 21 | impr 649 |
. . . 4
|
| 23 | 1, 4 | grpinvfn 17462 |
. . . . 5
|
| 24 | ffn 6045 |
. . . . . 6
| |
| 25 | 24 | ad2antrl 764 |
. . . . 5
|
| 26 | eqfnfv 6311 |
. . . . 5
| |
| 27 | 23, 25, 26 | sylancr 695 |
. . . 4
|
| 28 | 22, 27 | mpbird 247 |
. . 3
|
| 29 | 28 | ex 450 |
. 2
|
| 30 | 1, 4 | grpinvf 17466 |
. . . 4
|
| 31 | 1, 2, 3, 4 | grplinv 17468 |
. . . . 5
|
| 32 | 31 | ralrimiva 2966 |
. . . 4
|
| 33 | 30, 32 | jca 554 |
. . 3
|
| 34 | feq1 6026 |
. . . 4
| |
| 35 | fveq1 6190 |
. . . . . . 7
| |
| 36 | 35 | oveq1d 6665 |
. . . . . 6
|
| 37 | 36 | eqeq1d 2624 |
. . . . 5
|
| 38 | 37 | ralbidv 2986 |
. . . 4
|
| 39 | 34, 38 | anbi12d 747 |
. . 3
|
| 40 | 33, 39 | syl5ibcom 235 |
. 2
|
| 41 | 29, 40 | impbid 202 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-0g 16102 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-grp 17425 df-minusg 17426 |
| This theorem is referenced by: oppginv 17789 |
| Copyright terms: Public domain | W3C validator |