| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpinvid2 | Structured version Visualization version Unicode version | ||
| Description: The inverse of a group element expressed in terms of the identity element. (Contributed by NM, 24-Aug-2011.) |
| Ref | Expression |
|---|---|
| grpinv.b |
|
| grpinv.p |
|
| grpinv.u |
|
| grpinv.n |
|
| Ref | Expression |
|---|---|
| grpinvid2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 6657 |
. . . 4
| |
| 2 | 1 | adantl 482 |
. . 3
|
| 3 | grpinv.b |
. . . . . 6
| |
| 4 | grpinv.p |
. . . . . 6
| |
| 5 | grpinv.u |
. . . . . 6
| |
| 6 | grpinv.n |
. . . . . 6
| |
| 7 | 3, 4, 5, 6 | grplinv 17468 |
. . . . 5
|
| 8 | 7 | 3adant3 1081 |
. . . 4
|
| 9 | 8 | adantr 481 |
. . 3
|
| 10 | 2, 9 | eqtr3d 2658 |
. 2
|
| 11 | 3, 6 | grpinvcl 17467 |
. . . . . . 7
|
| 12 | 3, 4, 5 | grplid 17452 |
. . . . . . 7
|
| 13 | 11, 12 | syldan 487 |
. . . . . 6
|
| 14 | 13 | 3adant3 1081 |
. . . . 5
|
| 15 | 14 | eqcomd 2628 |
. . . 4
|
| 16 | 15 | adantr 481 |
. . 3
|
| 17 | oveq1 6657 |
. . . 4
| |
| 18 | 17 | adantl 482 |
. . 3
|
| 19 | simprr 796 |
. . . . . . . 8
| |
| 20 | simprl 794 |
. . . . . . . 8
| |
| 21 | 11 | adantrr 753 |
. . . . . . . 8
|
| 22 | 19, 20, 21 | 3jca 1242 |
. . . . . . 7
|
| 23 | 3, 4 | grpass 17431 |
. . . . . . 7
|
| 24 | 22, 23 | syldan 487 |
. . . . . 6
|
| 25 | 24 | 3impb 1260 |
. . . . 5
|
| 26 | 3, 4, 5, 6 | grprinv 17469 |
. . . . . . 7
|
| 27 | 26 | oveq2d 6666 |
. . . . . 6
|
| 28 | 27 | 3adant3 1081 |
. . . . 5
|
| 29 | 3, 4, 5 | grprid 17453 |
. . . . . 6
|
| 30 | 29 | 3adant2 1080 |
. . . . 5
|
| 31 | 25, 28, 30 | 3eqtrd 2660 |
. . . 4
|
| 32 | 31 | adantr 481 |
. . 3
|
| 33 | 16, 18, 32 | 3eqtr2d 2662 |
. 2
|
| 34 | 10, 33 | impbida 877 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-0g 16102 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-grp 17425 df-minusg 17426 |
| This theorem is referenced by: grpinvcnv 17483 grpsubeq0 17501 prdsinvgd 17526 rngnegr 18595 psrneg 19400 islindf4 20177 pi1inv 22852 lindslinindimp2lem4 42250 lincresunit3 42270 |
| Copyright terms: Public domain | W3C validator |