| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isidlc | Structured version Visualization version Unicode version | ||
| Description: The predicate "is an
ideal of the commutative ring |
| Ref | Expression |
|---|---|
| idlval.1 |
|
| idlval.2 |
|
| idlval.3 |
|
| idlval.4 |
|
| Ref | Expression |
|---|---|
| isidlc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crngorngo 33799 |
. . 3
| |
| 2 | idlval.1 |
. . . 4
| |
| 3 | idlval.2 |
. . . 4
| |
| 4 | idlval.3 |
. . . 4
| |
| 5 | idlval.4 |
. . . 4
| |
| 6 | 2, 3, 4, 5 | isidl 33813 |
. . 3
|
| 7 | 1, 6 | syl 17 |
. 2
|
| 8 | ssel2 3598 |
. . . . . . . 8
| |
| 9 | 2, 3, 4 | crngocom 33800 |
. . . . . . . . . . . . . . 15
|
| 10 | 9 | eleq1d 2686 |
. . . . . . . . . . . . . 14
|
| 11 | 10 | biimprd 238 |
. . . . . . . . . . . . 13
|
| 12 | 11 | 3expa 1265 |
. . . . . . . . . . . 12
|
| 13 | 12 | pm4.71d 666 |
. . . . . . . . . . 11
|
| 14 | 13 | bicomd 213 |
. . . . . . . . . 10
|
| 15 | 14 | ralbidva 2985 |
. . . . . . . . 9
|
| 16 | 15 | anbi2d 740 |
. . . . . . . 8
|
| 17 | 8, 16 | sylan2 491 |
. . . . . . 7
|
| 18 | 17 | anassrs 680 |
. . . . . 6
|
| 19 | 18 | ralbidva 2985 |
. . . . 5
|
| 20 | 19 | adantrr 753 |
. . . 4
|
| 21 | 20 | pm5.32da 673 |
. . 3
|
| 22 | df-3an 1039 |
. . 3
| |
| 23 | df-3an 1039 |
. . 3
| |
| 24 | 21, 22, 23 | 3bitr4g 303 |
. 2
|
| 25 | 7, 24 | bitrd 268 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-1st 7168 df-2nd 7169 df-rngo 33694 df-com2 33789 df-crngo 33793 df-idl 33809 |
| This theorem is referenced by: prnc 33866 |
| Copyright terms: Public domain | W3C validator |