Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islindeps Structured version   Visualization version   Unicode version

Theorem islindeps 42242
Description: The property of being a linearly dependent subset. (Contributed by AV, 26-Apr-2019.) (Revised by AV, 30-Jul-2019.)
Hypotheses
Ref Expression
islindeps.b  |-  B  =  ( Base `  M
)
islindeps.z  |-  Z  =  ( 0g `  M
)
islindeps.r  |-  R  =  (Scalar `  M )
islindeps.e  |-  E  =  ( Base `  R
)
islindeps.0  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
islindeps  |-  ( ( M  e.  W  /\  S  e.  ~P B
)  ->  ( S linDepS  M  <->  E. f  e.  ( E  ^m  S ) ( f finSupp  .0.  /\  (
f ( linC  `  M
) S )  =  Z  /\  E. x  e.  S  ( f `  x )  =/=  .0.  ) ) )
Distinct variable groups:    f, E    f, M, x    S, f, x
Allowed substitution hints:    B( x, f)    R( x, f)    E( x)    W( x, f)    .0. ( x, f)    Z( x, f)

Proof of Theorem islindeps
StepHypRef Expression
1 lindepsnlininds 42241 . . 3  |-  ( ( S  e.  ~P B  /\  M  e.  W
)  ->  ( S linDepS  M  <->  -.  S linIndS  M ) )
21ancoms 469 . 2  |-  ( ( M  e.  W  /\  S  e.  ~P B
)  ->  ( S linDepS  M  <->  -.  S linIndS  M ) )
3 islindeps.b . . . . . 6  |-  B  =  ( Base `  M
)
4 islindeps.z . . . . . 6  |-  Z  =  ( 0g `  M
)
5 islindeps.r . . . . . 6  |-  R  =  (Scalar `  M )
6 islindeps.e . . . . . 6  |-  E  =  ( Base `  R
)
7 islindeps.0 . . . . . 6  |-  .0.  =  ( 0g `  R )
83, 4, 5, 6, 7islininds 42235 . . . . 5  |-  ( ( S  e.  ~P B  /\  M  e.  W
)  ->  ( S linIndS  M  <-> 
( S  e.  ~P B  /\  A. f  e.  ( E  ^m  S
) ( ( f finSupp  .0.  /\  ( f ( linC  `  M ) S )  =  Z )  ->  A. x  e.  S  ( f `  x
)  =  .0.  )
) ) )
98ancoms 469 . . . 4  |-  ( ( M  e.  W  /\  S  e.  ~P B
)  ->  ( S linIndS  M  <-> 
( S  e.  ~P B  /\  A. f  e.  ( E  ^m  S
) ( ( f finSupp  .0.  /\  ( f ( linC  `  M ) S )  =  Z )  ->  A. x  e.  S  ( f `  x
)  =  .0.  )
) ) )
10 ibar 525 . . . . . 6  |-  ( S  e.  ~P B  -> 
( A. f  e.  ( E  ^m  S
) ( ( f finSupp  .0.  /\  ( f ( linC  `  M ) S )  =  Z )  ->  A. x  e.  S  ( f `  x
)  =  .0.  )  <->  ( S  e.  ~P B  /\  A. f  e.  ( E  ^m  S ) ( ( f finSupp  .0.  /\  ( f ( linC  `  M ) S )  =  Z )  ->  A. x  e.  S  ( f `  x
)  =  .0.  )
) ) )
1110bicomd 213 . . . . 5  |-  ( S  e.  ~P B  -> 
( ( S  e. 
~P B  /\  A. f  e.  ( E  ^m  S ) ( ( f finSupp  .0.  /\  (
f ( linC  `  M
) S )  =  Z )  ->  A. x  e.  S  ( f `  x )  =  .0.  ) )  <->  A. f  e.  ( E  ^m  S
) ( ( f finSupp  .0.  /\  ( f ( linC  `  M ) S )  =  Z )  ->  A. x  e.  S  ( f `  x
)  =  .0.  )
) )
1211adantl 482 . . . 4  |-  ( ( M  e.  W  /\  S  e.  ~P B
)  ->  ( ( S  e.  ~P B  /\  A. f  e.  ( E  ^m  S ) ( ( f finSupp  .0.  /\  ( f ( linC  `  M ) S )  =  Z )  ->  A. x  e.  S  ( f `  x
)  =  .0.  )
)  <->  A. f  e.  ( E  ^m  S ) ( ( f finSupp  .0.  /\  ( f ( linC  `  M ) S )  =  Z )  ->  A. x  e.  S  ( f `  x
)  =  .0.  )
) )
139, 12bitrd 268 . . 3  |-  ( ( M  e.  W  /\  S  e.  ~P B
)  ->  ( S linIndS  M  <->  A. f  e.  ( E  ^m  S ) ( ( f finSupp  .0.  /\  ( f ( linC  `  M ) S )  =  Z )  ->  A. x  e.  S  ( f `  x
)  =  .0.  )
) )
1413notbid 308 . 2  |-  ( ( M  e.  W  /\  S  e.  ~P B
)  ->  ( -.  S linIndS  M  <->  -.  A. f  e.  ( E  ^m  S
) ( ( f finSupp  .0.  /\  ( f ( linC  `  M ) S )  =  Z )  ->  A. x  e.  S  ( f `  x
)  =  .0.  )
) )
15 rexnal 2995 . . . 4  |-  ( E. f  e.  ( E  ^m  S )  -.  ( ( f finSupp  .0.  /\  ( f ( linC  `  M ) S )  =  Z )  ->  A. x  e.  S  ( f `  x
)  =  .0.  )  <->  -. 
A. f  e.  ( E  ^m  S ) ( ( f finSupp  .0.  /\  ( f ( linC  `  M ) S )  =  Z )  ->  A. x  e.  S  ( f `  x
)  =  .0.  )
)
16 df-ne 2795 . . . . . . . . 9  |-  ( ( f `  x )  =/=  .0.  <->  -.  (
f `  x )  =  .0.  )
1716rexbii 3041 . . . . . . . 8  |-  ( E. x  e.  S  ( f `  x )  =/=  .0.  <->  E. x  e.  S  -.  (
f `  x )  =  .0.  )
18 rexnal 2995 . . . . . . . 8  |-  ( E. x  e.  S  -.  ( f `  x
)  =  .0.  <->  -.  A. x  e.  S  ( f `  x )  =  .0.  )
1917, 18bitr2i 265 . . . . . . 7  |-  ( -. 
A. x  e.  S  ( f `  x
)  =  .0.  <->  E. x  e.  S  ( f `  x )  =/=  .0.  )
2019anbi2i 730 . . . . . 6  |-  ( ( ( f finSupp  .0.  /\  ( f ( linC  `  M ) S )  =  Z )  /\  -.  A. x  e.  S  ( f `  x
)  =  .0.  )  <->  ( ( f finSupp  .0.  /\  ( f ( linC  `  M ) S )  =  Z )  /\  E. x  e.  S  ( f `  x )  =/=  .0.  ) )
21 pm4.61 442 . . . . . 6  |-  ( -.  ( ( f finSupp  .0.  /\  ( f ( linC  `  M ) S )  =  Z )  ->  A. x  e.  S  ( f `  x
)  =  .0.  )  <->  ( ( f finSupp  .0.  /\  ( f ( linC  `  M ) S )  =  Z )  /\  -.  A. x  e.  S  ( f `  x
)  =  .0.  )
)
22 df-3an 1039 . . . . . 6  |-  ( ( f finSupp  .0.  /\  (
f ( linC  `  M
) S )  =  Z  /\  E. x  e.  S  ( f `  x )  =/=  .0.  ) 
<->  ( ( f finSupp  .0.  /\  ( f ( linC  `  M ) S )  =  Z )  /\  E. x  e.  S  ( f `  x )  =/=  .0.  ) )
2320, 21, 223bitr4i 292 . . . . 5  |-  ( -.  ( ( f finSupp  .0.  /\  ( f ( linC  `  M ) S )  =  Z )  ->  A. x  e.  S  ( f `  x
)  =  .0.  )  <->  ( f finSupp  .0.  /\  (
f ( linC  `  M
) S )  =  Z  /\  E. x  e.  S  ( f `  x )  =/=  .0.  ) )
2423rexbii 3041 . . . 4  |-  ( E. f  e.  ( E  ^m  S )  -.  ( ( f finSupp  .0.  /\  ( f ( linC  `  M ) S )  =  Z )  ->  A. x  e.  S  ( f `  x
)  =  .0.  )  <->  E. f  e.  ( E  ^m  S ) ( f finSupp  .0.  /\  (
f ( linC  `  M
) S )  =  Z  /\  E. x  e.  S  ( f `  x )  =/=  .0.  ) )
2515, 24bitr3i 266 . . 3  |-  ( -. 
A. f  e.  ( E  ^m  S ) ( ( f finSupp  .0.  /\  ( f ( linC  `  M ) S )  =  Z )  ->  A. x  e.  S  ( f `  x
)  =  .0.  )  <->  E. f  e.  ( E  ^m  S ) ( f finSupp  .0.  /\  (
f ( linC  `  M
) S )  =  Z  /\  E. x  e.  S  ( f `  x )  =/=  .0.  ) )
2625a1i 11 . 2  |-  ( ( M  e.  W  /\  S  e.  ~P B
)  ->  ( -.  A. f  e.  ( E  ^m  S ) ( ( f finSupp  .0.  /\  ( f ( linC  `  M ) S )  =  Z )  ->  A. x  e.  S  ( f `  x
)  =  .0.  )  <->  E. f  e.  ( E  ^m  S ) ( f finSupp  .0.  /\  (
f ( linC  `  M
) S )  =  Z  /\  E. x  e.  S  ( f `  x )  =/=  .0.  ) ) )
272, 14, 263bitrd 294 1  |-  ( ( M  e.  W  /\  S  e.  ~P B
)  ->  ( S linDepS  M  <->  E. f  e.  ( E  ^m  S ) ( f finSupp  .0.  /\  (
f ( linC  `  M
) S )  =  Z  /\  E. x  e.  S  ( f `  x )  =/=  .0.  ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   ~Pcpw 4158   class class class wbr 4653   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   finSupp cfsupp 8275   Basecbs 15857  Scalarcsca 15944   0gc0g 16100   linC clinc 42193   linIndS clininds 42229   linDepS clindeps 42230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-iota 5851  df-fv 5896  df-ov 6653  df-lininds 42231  df-lindeps 42233
This theorem is referenced by:  el0ldep  42255  ldepspr  42262  islindeps2  42272  isldepslvec2  42274  zlmodzxzldep  42293
  Copyright terms: Public domain W3C validator