Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  el0ldep Structured version   Visualization version   Unicode version

Theorem el0ldep 42255
Description: A set containing the zero element of a module is always linearly dependent, if the underlying ring has at least two elements. (Contributed by AV, 13-Apr-2019.) (Revised by AV, 27-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.)
Assertion
Ref Expression
el0ldep  |-  ( ( ( M  e.  LMod  /\  1  <  ( # `  ( Base `  (Scalar `  M ) ) ) )  /\  S  e. 
~P ( Base `  M
)  /\  ( 0g `  M )  e.  S
)  ->  S linDepS  M )

Proof of Theorem el0ldep
Dummy variables  x  f  s  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . . 5  |-  ( Base `  M )  =  (
Base `  M )
2 eqid 2622 . . . . 5  |-  (Scalar `  M )  =  (Scalar `  M )
3 eqid 2622 . . . . 5  |-  ( 0g
`  (Scalar `  M )
)  =  ( 0g
`  (Scalar `  M )
)
4 eqid 2622 . . . . 5  |-  ( 1r
`  (Scalar `  M )
)  =  ( 1r
`  (Scalar `  M )
)
5 eqeq1 2626 . . . . . . 7  |-  ( s  =  y  ->  (
s  =  ( 0g
`  M )  <->  y  =  ( 0g `  M ) ) )
65ifbid 4108 . . . . . 6  |-  ( s  =  y  ->  if ( s  =  ( 0g `  M ) ,  ( 1r `  (Scalar `  M ) ) ,  ( 0g `  (Scalar `  M ) ) )  =  if ( y  =  ( 0g
`  M ) ,  ( 1r `  (Scalar `  M ) ) ,  ( 0g `  (Scalar `  M ) ) ) )
76cbvmptv 4750 . . . . 5  |-  ( s  e.  S  |->  if ( s  =  ( 0g
`  M ) ,  ( 1r `  (Scalar `  M ) ) ,  ( 0g `  (Scalar `  M ) ) ) )  =  ( y  e.  S  |->  if ( y  =  ( 0g
`  M ) ,  ( 1r `  (Scalar `  M ) ) ,  ( 0g `  (Scalar `  M ) ) ) )
81, 2, 3, 4, 7mptcfsupp 42161 . . . 4  |-  ( ( M  e.  LMod  /\  S  e.  ~P ( Base `  M
)  /\  ( 0g `  M )  e.  S
)  ->  ( s  e.  S  |->  if ( s  =  ( 0g
`  M ) ,  ( 1r `  (Scalar `  M ) ) ,  ( 0g `  (Scalar `  M ) ) ) ) finSupp  ( 0g `  (Scalar `  M ) ) )
983adant1r 1319 . . 3  |-  ( ( ( M  e.  LMod  /\  1  <  ( # `  ( Base `  (Scalar `  M ) ) ) )  /\  S  e. 
~P ( Base `  M
)  /\  ( 0g `  M )  e.  S
)  ->  ( s  e.  S  |->  if ( s  =  ( 0g
`  M ) ,  ( 1r `  (Scalar `  M ) ) ,  ( 0g `  (Scalar `  M ) ) ) ) finSupp  ( 0g `  (Scalar `  M ) ) )
10 simp1l 1085 . . . 4  |-  ( ( ( M  e.  LMod  /\  1  <  ( # `  ( Base `  (Scalar `  M ) ) ) )  /\  S  e. 
~P ( Base `  M
)  /\  ( 0g `  M )  e.  S
)  ->  M  e.  LMod )
11 simp2 1062 . . . 4  |-  ( ( ( M  e.  LMod  /\  1  <  ( # `  ( Base `  (Scalar `  M ) ) ) )  /\  S  e. 
~P ( Base `  M
)  /\  ( 0g `  M )  e.  S
)  ->  S  e.  ~P ( Base `  M
) )
12 eqid 2622 . . . . 5  |-  ( 0g
`  M )  =  ( 0g `  M
)
13 eqid 2622 . . . . 5  |-  ( s  e.  S  |->  if ( s  =  ( 0g
`  M ) ,  ( 1r `  (Scalar `  M ) ) ,  ( 0g `  (Scalar `  M ) ) ) )  =  ( s  e.  S  |->  if ( s  =  ( 0g
`  M ) ,  ( 1r `  (Scalar `  M ) ) ,  ( 0g `  (Scalar `  M ) ) ) )
141, 2, 3, 4, 12, 13linc0scn0 42212 . . . 4  |-  ( ( M  e.  LMod  /\  S  e.  ~P ( Base `  M
) )  ->  (
( s  e.  S  |->  if ( s  =  ( 0g `  M
) ,  ( 1r
`  (Scalar `  M )
) ,  ( 0g
`  (Scalar `  M )
) ) ) ( linC  `  M ) S )  =  ( 0g `  M ) )
1510, 11, 14syl2anc 693 . . 3  |-  ( ( ( M  e.  LMod  /\  1  <  ( # `  ( Base `  (Scalar `  M ) ) ) )  /\  S  e. 
~P ( Base `  M
)  /\  ( 0g `  M )  e.  S
)  ->  ( (
s  e.  S  |->  if ( s  =  ( 0g `  M ) ,  ( 1r `  (Scalar `  M ) ) ,  ( 0g `  (Scalar `  M ) ) ) ) ( linC  `  M ) S )  =  ( 0g `  M ) )
16 simp3 1063 . . . 4  |-  ( ( ( M  e.  LMod  /\  1  <  ( # `  ( Base `  (Scalar `  M ) ) ) )  /\  S  e. 
~P ( Base `  M
)  /\  ( 0g `  M )  e.  S
)  ->  ( 0g `  M )  e.  S
)
17 fveq2 6191 . . . . . 6  |-  ( x  =  ( 0g `  M )  ->  (
( s  e.  S  |->  if ( s  =  ( 0g `  M
) ,  ( 1r
`  (Scalar `  M )
) ,  ( 0g
`  (Scalar `  M )
) ) ) `  x )  =  ( ( s  e.  S  |->  if ( s  =  ( 0g `  M
) ,  ( 1r
`  (Scalar `  M )
) ,  ( 0g
`  (Scalar `  M )
) ) ) `  ( 0g `  M ) ) )
1817neeq1d 2853 . . . . 5  |-  ( x  =  ( 0g `  M )  ->  (
( ( s  e.  S  |->  if ( s  =  ( 0g `  M ) ,  ( 1r `  (Scalar `  M ) ) ,  ( 0g `  (Scalar `  M ) ) ) ) `  x )  =/=  ( 0g `  (Scalar `  M ) )  <-> 
( ( s  e.  S  |->  if ( s  =  ( 0g `  M ) ,  ( 1r `  (Scalar `  M ) ) ,  ( 0g `  (Scalar `  M ) ) ) ) `  ( 0g
`  M ) )  =/=  ( 0g `  (Scalar `  M ) ) ) )
1918adantl 482 . . . 4  |-  ( ( ( ( M  e. 
LMod  /\  1  <  ( # `
 ( Base `  (Scalar `  M ) ) ) )  /\  S  e. 
~P ( Base `  M
)  /\  ( 0g `  M )  e.  S
)  /\  x  =  ( 0g `  M ) )  ->  ( (
( s  e.  S  |->  if ( s  =  ( 0g `  M
) ,  ( 1r
`  (Scalar `  M )
) ,  ( 0g
`  (Scalar `  M )
) ) ) `  x )  =/=  ( 0g `  (Scalar `  M
) )  <->  ( (
s  e.  S  |->  if ( s  =  ( 0g `  M ) ,  ( 1r `  (Scalar `  M ) ) ,  ( 0g `  (Scalar `  M ) ) ) ) `  ( 0g `  M ) )  =/=  ( 0g `  (Scalar `  M ) ) ) )
20 fvexd 6203 . . . . . 6  |-  ( ( ( M  e.  LMod  /\  1  <  ( # `  ( Base `  (Scalar `  M ) ) ) )  /\  S  e. 
~P ( Base `  M
)  /\  ( 0g `  M )  e.  S
)  ->  ( 1r `  (Scalar `  M )
)  e.  _V )
21 iftrue 4092 . . . . . . 7  |-  ( s  =  ( 0g `  M )  ->  if ( s  =  ( 0g `  M ) ,  ( 1r `  (Scalar `  M ) ) ,  ( 0g `  (Scalar `  M ) ) )  =  ( 1r
`  (Scalar `  M )
) )
2221, 13fvmptg 6280 . . . . . 6  |-  ( ( ( 0g `  M
)  e.  S  /\  ( 1r `  (Scalar `  M ) )  e. 
_V )  ->  (
( s  e.  S  |->  if ( s  =  ( 0g `  M
) ,  ( 1r
`  (Scalar `  M )
) ,  ( 0g
`  (Scalar `  M )
) ) ) `  ( 0g `  M ) )  =  ( 1r
`  (Scalar `  M )
) )
2316, 20, 22syl2anc 693 . . . . 5  |-  ( ( ( M  e.  LMod  /\  1  <  ( # `  ( Base `  (Scalar `  M ) ) ) )  /\  S  e. 
~P ( Base `  M
)  /\  ( 0g `  M )  e.  S
)  ->  ( (
s  e.  S  |->  if ( s  =  ( 0g `  M ) ,  ( 1r `  (Scalar `  M ) ) ,  ( 0g `  (Scalar `  M ) ) ) ) `  ( 0g `  M ) )  =  ( 1r `  (Scalar `  M ) ) )
242lmodring 18871 . . . . . . . 8  |-  ( M  e.  LMod  ->  (Scalar `  M )  e.  Ring )
2524anim1i 592 . . . . . . 7  |-  ( ( M  e.  LMod  /\  1  <  ( # `  ( Base `  (Scalar `  M
) ) ) )  ->  ( (Scalar `  M )  e.  Ring  /\  1  <  ( # `  ( Base `  (Scalar `  M ) ) ) ) )
26253ad2ant1 1082 . . . . . 6  |-  ( ( ( M  e.  LMod  /\  1  <  ( # `  ( Base `  (Scalar `  M ) ) ) )  /\  S  e. 
~P ( Base `  M
)  /\  ( 0g `  M )  e.  S
)  ->  ( (Scalar `  M )  e.  Ring  /\  1  <  ( # `  ( Base `  (Scalar `  M ) ) ) ) )
27 eqid 2622 . . . . . . 7  |-  ( Base `  (Scalar `  M )
)  =  ( Base `  (Scalar `  M )
)
2827, 4, 3ring1ne0 18591 . . . . . 6  |-  ( ( (Scalar `  M )  e.  Ring  /\  1  <  (
# `  ( Base `  (Scalar `  M )
) ) )  -> 
( 1r `  (Scalar `  M ) )  =/=  ( 0g `  (Scalar `  M ) ) )
2926, 28syl 17 . . . . 5  |-  ( ( ( M  e.  LMod  /\  1  <  ( # `  ( Base `  (Scalar `  M ) ) ) )  /\  S  e. 
~P ( Base `  M
)  /\  ( 0g `  M )  e.  S
)  ->  ( 1r `  (Scalar `  M )
)  =/=  ( 0g
`  (Scalar `  M )
) )
3023, 29eqnetrd 2861 . . . 4  |-  ( ( ( M  e.  LMod  /\  1  <  ( # `  ( Base `  (Scalar `  M ) ) ) )  /\  S  e. 
~P ( Base `  M
)  /\  ( 0g `  M )  e.  S
)  ->  ( (
s  e.  S  |->  if ( s  =  ( 0g `  M ) ,  ( 1r `  (Scalar `  M ) ) ,  ( 0g `  (Scalar `  M ) ) ) ) `  ( 0g `  M ) )  =/=  ( 0g `  (Scalar `  M ) ) )
3116, 19, 30rspcedvd 3317 . . 3  |-  ( ( ( M  e.  LMod  /\  1  <  ( # `  ( Base `  (Scalar `  M ) ) ) )  /\  S  e. 
~P ( Base `  M
)  /\  ( 0g `  M )  e.  S
)  ->  E. x  e.  S  ( (
s  e.  S  |->  if ( s  =  ( 0g `  M ) ,  ( 1r `  (Scalar `  M ) ) ,  ( 0g `  (Scalar `  M ) ) ) ) `  x
)  =/=  ( 0g
`  (Scalar `  M )
) )
322, 27, 4lmod1cl 18890 . . . . . . . . . 10  |-  ( M  e.  LMod  ->  ( 1r
`  (Scalar `  M )
)  e.  ( Base `  (Scalar `  M )
) )
332, 27, 3lmod0cl 18889 . . . . . . . . . 10  |-  ( M  e.  LMod  ->  ( 0g
`  (Scalar `  M )
)  e.  ( Base `  (Scalar `  M )
) )
3432, 33ifcld 4131 . . . . . . . . 9  |-  ( M  e.  LMod  ->  if ( s  =  ( 0g
`  M ) ,  ( 1r `  (Scalar `  M ) ) ,  ( 0g `  (Scalar `  M ) ) )  e.  ( Base `  (Scalar `  M ) ) )
3534adantr 481 . . . . . . . 8  |-  ( ( M  e.  LMod  /\  1  <  ( # `  ( Base `  (Scalar `  M
) ) ) )  ->  if ( s  =  ( 0g `  M ) ,  ( 1r `  (Scalar `  M ) ) ,  ( 0g `  (Scalar `  M ) ) )  e.  ( Base `  (Scalar `  M ) ) )
36353ad2ant1 1082 . . . . . . 7  |-  ( ( ( M  e.  LMod  /\  1  <  ( # `  ( Base `  (Scalar `  M ) ) ) )  /\  S  e. 
~P ( Base `  M
)  /\  ( 0g `  M )  e.  S
)  ->  if (
s  =  ( 0g
`  M ) ,  ( 1r `  (Scalar `  M ) ) ,  ( 0g `  (Scalar `  M ) ) )  e.  ( Base `  (Scalar `  M ) ) )
3736adantr 481 . . . . . 6  |-  ( ( ( ( M  e. 
LMod  /\  1  <  ( # `
 ( Base `  (Scalar `  M ) ) ) )  /\  S  e. 
~P ( Base `  M
)  /\  ( 0g `  M )  e.  S
)  /\  s  e.  S )  ->  if ( s  =  ( 0g `  M ) ,  ( 1r `  (Scalar `  M ) ) ,  ( 0g `  (Scalar `  M ) ) )  e.  ( Base `  (Scalar `  M )
) )
3837, 13fmptd 6385 . . . . 5  |-  ( ( ( M  e.  LMod  /\  1  <  ( # `  ( Base `  (Scalar `  M ) ) ) )  /\  S  e. 
~P ( Base `  M
)  /\  ( 0g `  M )  e.  S
)  ->  ( s  e.  S  |->  if ( s  =  ( 0g
`  M ) ,  ( 1r `  (Scalar `  M ) ) ,  ( 0g `  (Scalar `  M ) ) ) ) : S --> ( Base `  (Scalar `  M )
) )
39 fvexd 6203 . . . . . 6  |-  ( ( ( M  e.  LMod  /\  1  <  ( # `  ( Base `  (Scalar `  M ) ) ) )  /\  S  e. 
~P ( Base `  M
)  /\  ( 0g `  M )  e.  S
)  ->  ( Base `  (Scalar `  M )
)  e.  _V )
4039, 11elmapd 7871 . . . . 5  |-  ( ( ( M  e.  LMod  /\  1  <  ( # `  ( Base `  (Scalar `  M ) ) ) )  /\  S  e. 
~P ( Base `  M
)  /\  ( 0g `  M )  e.  S
)  ->  ( (
s  e.  S  |->  if ( s  =  ( 0g `  M ) ,  ( 1r `  (Scalar `  M ) ) ,  ( 0g `  (Scalar `  M ) ) ) )  e.  ( ( Base `  (Scalar `  M ) )  ^m  S )  <->  ( s  e.  S  |->  if ( s  =  ( 0g
`  M ) ,  ( 1r `  (Scalar `  M ) ) ,  ( 0g `  (Scalar `  M ) ) ) ) : S --> ( Base `  (Scalar `  M )
) ) )
4138, 40mpbird 247 . . . 4  |-  ( ( ( M  e.  LMod  /\  1  <  ( # `  ( Base `  (Scalar `  M ) ) ) )  /\  S  e. 
~P ( Base `  M
)  /\  ( 0g `  M )  e.  S
)  ->  ( s  e.  S  |->  if ( s  =  ( 0g
`  M ) ,  ( 1r `  (Scalar `  M ) ) ,  ( 0g `  (Scalar `  M ) ) ) )  e.  ( (
Base `  (Scalar `  M
) )  ^m  S
) )
42 breq1 4656 . . . . . 6  |-  ( f  =  ( s  e.  S  |->  if ( s  =  ( 0g `  M ) ,  ( 1r `  (Scalar `  M ) ) ,  ( 0g `  (Scalar `  M ) ) ) )  ->  ( f finSupp  ( 0g `  (Scalar `  M ) )  <->  ( s  e.  S  |->  if ( s  =  ( 0g
`  M ) ,  ( 1r `  (Scalar `  M ) ) ,  ( 0g `  (Scalar `  M ) ) ) ) finSupp  ( 0g `  (Scalar `  M ) ) ) )
43 oveq1 6657 . . . . . . 7  |-  ( f  =  ( s  e.  S  |->  if ( s  =  ( 0g `  M ) ,  ( 1r `  (Scalar `  M ) ) ,  ( 0g `  (Scalar `  M ) ) ) )  ->  ( f
( linC  `  M ) S )  =  ( ( s  e.  S  |->  if ( s  =  ( 0g `  M
) ,  ( 1r
`  (Scalar `  M )
) ,  ( 0g
`  (Scalar `  M )
) ) ) ( linC  `  M ) S ) )
4443eqeq1d 2624 . . . . . 6  |-  ( f  =  ( s  e.  S  |->  if ( s  =  ( 0g `  M ) ,  ( 1r `  (Scalar `  M ) ) ,  ( 0g `  (Scalar `  M ) ) ) )  ->  ( (
f ( linC  `  M
) S )  =  ( 0g `  M
)  <->  ( ( s  e.  S  |->  if ( s  =  ( 0g
`  M ) ,  ( 1r `  (Scalar `  M ) ) ,  ( 0g `  (Scalar `  M ) ) ) ) ( linC  `  M
) S )  =  ( 0g `  M
) ) )
45 fveq1 6190 . . . . . . . 8  |-  ( f  =  ( s  e.  S  |->  if ( s  =  ( 0g `  M ) ,  ( 1r `  (Scalar `  M ) ) ,  ( 0g `  (Scalar `  M ) ) ) )  ->  ( f `  x )  =  ( ( s  e.  S  |->  if ( s  =  ( 0g `  M
) ,  ( 1r
`  (Scalar `  M )
) ,  ( 0g
`  (Scalar `  M )
) ) ) `  x ) )
4645neeq1d 2853 . . . . . . 7  |-  ( f  =  ( s  e.  S  |->  if ( s  =  ( 0g `  M ) ,  ( 1r `  (Scalar `  M ) ) ,  ( 0g `  (Scalar `  M ) ) ) )  ->  ( (
f `  x )  =/=  ( 0g `  (Scalar `  M ) )  <->  ( (
s  e.  S  |->  if ( s  =  ( 0g `  M ) ,  ( 1r `  (Scalar `  M ) ) ,  ( 0g `  (Scalar `  M ) ) ) ) `  x
)  =/=  ( 0g
`  (Scalar `  M )
) ) )
4746rexbidv 3052 . . . . . 6  |-  ( f  =  ( s  e.  S  |->  if ( s  =  ( 0g `  M ) ,  ( 1r `  (Scalar `  M ) ) ,  ( 0g `  (Scalar `  M ) ) ) )  ->  ( E. x  e.  S  (
f `  x )  =/=  ( 0g `  (Scalar `  M ) )  <->  E. x  e.  S  ( (
s  e.  S  |->  if ( s  =  ( 0g `  M ) ,  ( 1r `  (Scalar `  M ) ) ,  ( 0g `  (Scalar `  M ) ) ) ) `  x
)  =/=  ( 0g
`  (Scalar `  M )
) ) )
4842, 44, 473anbi123d 1399 . . . . 5  |-  ( f  =  ( s  e.  S  |->  if ( s  =  ( 0g `  M ) ,  ( 1r `  (Scalar `  M ) ) ,  ( 0g `  (Scalar `  M ) ) ) )  ->  ( (
f finSupp  ( 0g `  (Scalar `  M ) )  /\  ( f ( linC  `  M ) S )  =  ( 0g `  M )  /\  E. x  e.  S  (
f `  x )  =/=  ( 0g `  (Scalar `  M ) ) )  <-> 
( ( s  e.  S  |->  if ( s  =  ( 0g `  M ) ,  ( 1r `  (Scalar `  M ) ) ,  ( 0g `  (Scalar `  M ) ) ) ) finSupp  ( 0g `  (Scalar `  M ) )  /\  ( ( s  e.  S  |->  if ( s  =  ( 0g
`  M ) ,  ( 1r `  (Scalar `  M ) ) ,  ( 0g `  (Scalar `  M ) ) ) ) ( linC  `  M
) S )  =  ( 0g `  M
)  /\  E. x  e.  S  ( (
s  e.  S  |->  if ( s  =  ( 0g `  M ) ,  ( 1r `  (Scalar `  M ) ) ,  ( 0g `  (Scalar `  M ) ) ) ) `  x
)  =/=  ( 0g
`  (Scalar `  M )
) ) ) )
4948adantl 482 . . . 4  |-  ( ( ( ( M  e. 
LMod  /\  1  <  ( # `
 ( Base `  (Scalar `  M ) ) ) )  /\  S  e. 
~P ( Base `  M
)  /\  ( 0g `  M )  e.  S
)  /\  f  =  ( s  e.  S  |->  if ( s  =  ( 0g `  M
) ,  ( 1r
`  (Scalar `  M )
) ,  ( 0g
`  (Scalar `  M )
) ) ) )  ->  ( ( f finSupp 
( 0g `  (Scalar `  M ) )  /\  ( f ( linC  `  M ) S )  =  ( 0g `  M )  /\  E. x  e.  S  (
f `  x )  =/=  ( 0g `  (Scalar `  M ) ) )  <-> 
( ( s  e.  S  |->  if ( s  =  ( 0g `  M ) ,  ( 1r `  (Scalar `  M ) ) ,  ( 0g `  (Scalar `  M ) ) ) ) finSupp  ( 0g `  (Scalar `  M ) )  /\  ( ( s  e.  S  |->  if ( s  =  ( 0g
`  M ) ,  ( 1r `  (Scalar `  M ) ) ,  ( 0g `  (Scalar `  M ) ) ) ) ( linC  `  M
) S )  =  ( 0g `  M
)  /\  E. x  e.  S  ( (
s  e.  S  |->  if ( s  =  ( 0g `  M ) ,  ( 1r `  (Scalar `  M ) ) ,  ( 0g `  (Scalar `  M ) ) ) ) `  x
)  =/=  ( 0g
`  (Scalar `  M )
) ) ) )
5041, 49rspcedv 3313 . . 3  |-  ( ( ( M  e.  LMod  /\  1  <  ( # `  ( Base `  (Scalar `  M ) ) ) )  /\  S  e. 
~P ( Base `  M
)  /\  ( 0g `  M )  e.  S
)  ->  ( (
( s  e.  S  |->  if ( s  =  ( 0g `  M
) ,  ( 1r
`  (Scalar `  M )
) ,  ( 0g
`  (Scalar `  M )
) ) ) finSupp  ( 0g `  (Scalar `  M
) )  /\  (
( s  e.  S  |->  if ( s  =  ( 0g `  M
) ,  ( 1r
`  (Scalar `  M )
) ,  ( 0g
`  (Scalar `  M )
) ) ) ( linC  `  M ) S )  =  ( 0g `  M )  /\  E. x  e.  S  (
( s  e.  S  |->  if ( s  =  ( 0g `  M
) ,  ( 1r
`  (Scalar `  M )
) ,  ( 0g
`  (Scalar `  M )
) ) ) `  x )  =/=  ( 0g `  (Scalar `  M
) ) )  ->  E. f  e.  (
( Base `  (Scalar `  M
) )  ^m  S
) ( f finSupp  ( 0g `  (Scalar `  M
) )  /\  (
f ( linC  `  M
) S )  =  ( 0g `  M
)  /\  E. x  e.  S  ( f `  x )  =/=  ( 0g `  (Scalar `  M
) ) ) ) )
519, 15, 31, 50mp3and 1427 . 2  |-  ( ( ( M  e.  LMod  /\  1  <  ( # `  ( Base `  (Scalar `  M ) ) ) )  /\  S  e. 
~P ( Base `  M
)  /\  ( 0g `  M )  e.  S
)  ->  E. f  e.  ( ( Base `  (Scalar `  M ) )  ^m  S ) ( f finSupp 
( 0g `  (Scalar `  M ) )  /\  ( f ( linC  `  M ) S )  =  ( 0g `  M )  /\  E. x  e.  S  (
f `  x )  =/=  ( 0g `  (Scalar `  M ) ) ) )
521, 12, 2, 27, 3islindeps 42242 . . 3  |-  ( ( M  e.  LMod  /\  S  e.  ~P ( Base `  M
) )  ->  ( S linDepS  M  <->  E. f  e.  ( ( Base `  (Scalar `  M ) )  ^m  S ) ( f finSupp 
( 0g `  (Scalar `  M ) )  /\  ( f ( linC  `  M ) S )  =  ( 0g `  M )  /\  E. x  e.  S  (
f `  x )  =/=  ( 0g `  (Scalar `  M ) ) ) ) )
5310, 11, 52syl2anc 693 . 2  |-  ( ( ( M  e.  LMod  /\  1  <  ( # `  ( Base `  (Scalar `  M ) ) ) )  /\  S  e. 
~P ( Base `  M
)  /\  ( 0g `  M )  e.  S
)  ->  ( S linDepS  M  <->  E. f  e.  (
( Base `  (Scalar `  M
) )  ^m  S
) ( f finSupp  ( 0g `  (Scalar `  M
) )  /\  (
f ( linC  `  M
) S )  =  ( 0g `  M
)  /\  E. x  e.  S  ( f `  x )  =/=  ( 0g `  (Scalar `  M
) ) ) ) )
5451, 53mpbird 247 1  |-  ( ( ( M  e.  LMod  /\  1  <  ( # `  ( Base `  (Scalar `  M ) ) ) )  /\  S  e. 
~P ( Base `  M
)  /\  ( 0g `  M )  e.  S
)  ->  S linDepS  M )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   _Vcvv 3200   ifcif 4086   ~Pcpw 4158   class class class wbr 4653    |-> cmpt 4729   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   finSupp cfsupp 8275   1c1 9937    < clt 10074   #chash 13117   Basecbs 15857  Scalarcsca 15944   0gc0g 16100   1rcur 18501   Ringcrg 18547   LModclmod 18863   linC clinc 42193   linDepS clindeps 42230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-seq 12802  df-hash 13118  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-0g 16102  df-gsum 16103  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-mgp 18490  df-ur 18502  df-ring 18549  df-lmod 18865  df-linc 42195  df-lininds 42231  df-lindeps 42233
This theorem is referenced by:  el0ldepsnzr  42256
  Copyright terms: Public domain W3C validator