MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islindf2 Structured version   Visualization version   Unicode version

Theorem islindf2 20153
Description: Property of an independent family of vectors with prior constrained domain and codomain. (Contributed by Stefan O'Rear, 26-Feb-2015.)
Hypotheses
Ref Expression
islindf.b  |-  B  =  ( Base `  W
)
islindf.v  |-  .x.  =  ( .s `  W )
islindf.k  |-  K  =  ( LSpan `  W )
islindf.s  |-  S  =  (Scalar `  W )
islindf.n  |-  N  =  ( Base `  S
)
islindf.z  |-  .0.  =  ( 0g `  S )
Assertion
Ref Expression
islindf2  |-  ( ( W  e.  Y  /\  I  e.  X  /\  F : I --> B )  ->  ( F LIndF  W  <->  A. x  e.  I  A. k  e.  ( N  \  {  .0.  } )  -.  ( k  .x.  ( F `  x ) )  e.  ( K `
 ( F "
( I  \  {
x } ) ) ) ) )
Distinct variable groups:    k, F, x    k, N    k, W, x    .0. , k    B, k, x    k, I, x    k, X, x    k, Y, x
Allowed substitution hints:    S( x, k)    .x. ( x, k)    K( x, k)    N( x)    .0. ( x)

Proof of Theorem islindf2
StepHypRef Expression
1 simp1 1061 . . 3  |-  ( ( W  e.  Y  /\  I  e.  X  /\  F : I --> B )  ->  W  e.  Y
)
2 simp3 1063 . . . 4  |-  ( ( W  e.  Y  /\  I  e.  X  /\  F : I --> B )  ->  F : I --> B )
3 simp2 1062 . . . 4  |-  ( ( W  e.  Y  /\  I  e.  X  /\  F : I --> B )  ->  I  e.  X
)
4 fex 6490 . . . 4  |-  ( ( F : I --> B  /\  I  e.  X )  ->  F  e.  _V )
52, 3, 4syl2anc 693 . . 3  |-  ( ( W  e.  Y  /\  I  e.  X  /\  F : I --> B )  ->  F  e.  _V )
6 islindf.b . . . 4  |-  B  =  ( Base `  W
)
7 islindf.v . . . 4  |-  .x.  =  ( .s `  W )
8 islindf.k . . . 4  |-  K  =  ( LSpan `  W )
9 islindf.s . . . 4  |-  S  =  (Scalar `  W )
10 islindf.n . . . 4  |-  N  =  ( Base `  S
)
11 islindf.z . . . 4  |-  .0.  =  ( 0g `  S )
126, 7, 8, 9, 10, 11islindf 20151 . . 3  |-  ( ( W  e.  Y  /\  F  e.  _V )  ->  ( F LIndF  W  <->  ( F : dom  F --> B  /\  A. x  e.  dom  F A. k  e.  ( N  \  {  .0.  }
)  -.  ( k 
.x.  ( F `  x ) )  e.  ( K `  ( F " ( dom  F  \  { x } ) ) ) ) ) )
131, 5, 12syl2anc 693 . 2  |-  ( ( W  e.  Y  /\  I  e.  X  /\  F : I --> B )  ->  ( F LIndF  W  <->  ( F : dom  F --> B  /\  A. x  e. 
dom  F A. k  e.  ( N  \  {  .0.  } )  -.  (
k  .x.  ( F `  x ) )  e.  ( K `  ( F " ( dom  F  \  { x } ) ) ) ) ) )
14 ffdm 6062 . . . . 5  |-  ( F : I --> B  -> 
( F : dom  F --> B  /\  dom  F  C_  I ) )
1514simpld 475 . . . 4  |-  ( F : I --> B  ->  F : dom  F --> B )
16153ad2ant3 1084 . . 3  |-  ( ( W  e.  Y  /\  I  e.  X  /\  F : I --> B )  ->  F : dom  F --> B )
1716biantrurd 529 . 2  |-  ( ( W  e.  Y  /\  I  e.  X  /\  F : I --> B )  ->  ( A. x  e.  dom  F A. k  e.  ( N  \  {  .0.  } )  -.  (
k  .x.  ( F `  x ) )  e.  ( K `  ( F " ( dom  F  \  { x } ) ) )  <->  ( F : dom  F --> B  /\  A. x  e.  dom  F A. k  e.  ( N  \  {  .0.  }
)  -.  ( k 
.x.  ( F `  x ) )  e.  ( K `  ( F " ( dom  F  \  { x } ) ) ) ) ) )
18 fdm 6051 . . . 4  |-  ( F : I --> B  ->  dom  F  =  I )
19183ad2ant3 1084 . . 3  |-  ( ( W  e.  Y  /\  I  e.  X  /\  F : I --> B )  ->  dom  F  =  I )
2019difeq1d 3727 . . . . . . . 8  |-  ( ( W  e.  Y  /\  I  e.  X  /\  F : I --> B )  ->  ( dom  F  \  { x } )  =  ( I  \  { x } ) )
2120imaeq2d 5466 . . . . . . 7  |-  ( ( W  e.  Y  /\  I  e.  X  /\  F : I --> B )  ->  ( F "
( dom  F  \  {
x } ) )  =  ( F "
( I  \  {
x } ) ) )
2221fveq2d 6195 . . . . . 6  |-  ( ( W  e.  Y  /\  I  e.  X  /\  F : I --> B )  ->  ( K `  ( F " ( dom 
F  \  { x } ) ) )  =  ( K `  ( F " ( I 
\  { x }
) ) ) )
2322eleq2d 2687 . . . . 5  |-  ( ( W  e.  Y  /\  I  e.  X  /\  F : I --> B )  ->  ( ( k 
.x.  ( F `  x ) )  e.  ( K `  ( F " ( dom  F  \  { x } ) ) )  <->  ( k  .x.  ( F `  x
) )  e.  ( K `  ( F
" ( I  \  { x } ) ) ) ) )
2423notbid 308 . . . 4  |-  ( ( W  e.  Y  /\  I  e.  X  /\  F : I --> B )  ->  ( -.  (
k  .x.  ( F `  x ) )  e.  ( K `  ( F " ( dom  F  \  { x } ) ) )  <->  -.  (
k  .x.  ( F `  x ) )  e.  ( K `  ( F " ( I  \  { x } ) ) ) ) )
2524ralbidv 2986 . . 3  |-  ( ( W  e.  Y  /\  I  e.  X  /\  F : I --> B )  ->  ( A. k  e.  ( N  \  {  .0.  } )  -.  (
k  .x.  ( F `  x ) )  e.  ( K `  ( F " ( dom  F  \  { x } ) ) )  <->  A. k  e.  ( N  \  {  .0.  } )  -.  (
k  .x.  ( F `  x ) )  e.  ( K `  ( F " ( I  \  { x } ) ) ) ) )
2619, 25raleqbidv 3152 . 2  |-  ( ( W  e.  Y  /\  I  e.  X  /\  F : I --> B )  ->  ( A. x  e.  dom  F A. k  e.  ( N  \  {  .0.  } )  -.  (
k  .x.  ( F `  x ) )  e.  ( K `  ( F " ( dom  F  \  { x } ) ) )  <->  A. x  e.  I  A. k  e.  ( N  \  {  .0.  } )  -.  (
k  .x.  ( F `  x ) )  e.  ( K `  ( F " ( I  \  { x } ) ) ) ) )
2713, 17, 263bitr2d 296 1  |-  ( ( W  e.  Y  /\  I  e.  X  /\  F : I --> B )  ->  ( F LIndF  W  <->  A. x  e.  I  A. k  e.  ( N  \  {  .0.  } )  -.  ( k  .x.  ( F `  x ) )  e.  ( K `
 ( F "
( I  \  {
x } ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200    \ cdif 3571    C_ wss 3574   {csn 4177   class class class wbr 4653   dom cdm 5114   "cima 5117   -->wf 5884   ` cfv 5888  (class class class)co 6650   Basecbs 15857  Scalarcsca 15944   .scvsca 15945   0gc0g 16100   LSpanclspn 18971   LIndF clindf 20143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-lindf 20145
This theorem is referenced by:  lindfmm  20166  islindf4  20177
  Copyright terms: Public domain W3C validator