| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > islinds2 | Structured version Visualization version Unicode version | ||
| Description: Expanded property of an independent set of vectors. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| Ref | Expression |
|---|---|
| islindf.b |
|
| islindf.v |
|
| islindf.k |
|
| islindf.s |
|
| islindf.n |
|
| islindf.z |
|
| Ref | Expression |
|---|---|
| islinds2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | islindf.b |
. . 3
| |
| 2 | 1 | islinds 20148 |
. 2
|
| 3 | fvex 6201 |
. . . . . . . 8
| |
| 4 | 1, 3 | eqeltri 2697 |
. . . . . . 7
|
| 5 | 4 | ssex 4802 |
. . . . . 6
|
| 6 | 5 | adantl 482 |
. . . . 5
|
| 7 | resiexg 7102 |
. . . . 5
| |
| 8 | 6, 7 | syl 17 |
. . . 4
|
| 9 | islindf.v |
. . . . 5
| |
| 10 | islindf.k |
. . . . 5
| |
| 11 | islindf.s |
. . . . 5
| |
| 12 | islindf.n |
. . . . 5
| |
| 13 | islindf.z |
. . . . 5
| |
| 14 | 1, 9, 10, 11, 12, 13 | islindf 20151 |
. . . 4
|
| 15 | 8, 14 | syldan 487 |
. . 3
|
| 16 | 15 | pm5.32da 673 |
. 2
|
| 17 | f1oi 6174 |
. . . . . . . . 9
| |
| 18 | f1of 6137 |
. . . . . . . . 9
| |
| 19 | 17, 18 | ax-mp 5 |
. . . . . . . 8
|
| 20 | dmresi 5457 |
. . . . . . . . 9
| |
| 21 | 20 | feq2i 6037 |
. . . . . . . 8
|
| 22 | 19, 21 | mpbir 221 |
. . . . . . 7
|
| 23 | fss 6056 |
. . . . . . 7
| |
| 24 | 22, 23 | mpan 706 |
. . . . . 6
|
| 25 | 24 | biantrurd 529 |
. . . . 5
|
| 26 | 20 | raleqi 3142 |
. . . . . . 7
|
| 27 | fvresi 6439 |
. . . . . . . . . . . 12
| |
| 28 | 27 | oveq2d 6666 |
. . . . . . . . . . 11
|
| 29 | 20 | difeq1i 3724 |
. . . . . . . . . . . . . . 15
|
| 30 | 29 | imaeq2i 5464 |
. . . . . . . . . . . . . 14
|
| 31 | difss 3737 |
. . . . . . . . . . . . . . 15
| |
| 32 | resiima 5480 |
. . . . . . . . . . . . . . 15
| |
| 33 | 31, 32 | ax-mp 5 |
. . . . . . . . . . . . . 14
|
| 34 | 30, 33 | eqtri 2644 |
. . . . . . . . . . . . 13
|
| 35 | 34 | fveq2i 6194 |
. . . . . . . . . . . 12
|
| 36 | 35 | a1i 11 |
. . . . . . . . . . 11
|
| 37 | 28, 36 | eleq12d 2695 |
. . . . . . . . . 10
|
| 38 | 37 | notbid 308 |
. . . . . . . . 9
|
| 39 | 38 | ralbidv 2986 |
. . . . . . . 8
|
| 40 | 39 | ralbiia 2979 |
. . . . . . 7
|
| 41 | 26, 40 | bitri 264 |
. . . . . 6
|
| 42 | 41 | anbi2i 730 |
. . . . 5
|
| 43 | 25, 42 | syl6rbbr 279 |
. . . 4
|
| 44 | 43 | pm5.32i 669 |
. . 3
|
| 45 | 44 | a1i 11 |
. 2
|
| 46 | 2, 16, 45 | 3bitrd 294 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-lindf 20145 df-linds 20146 |
| This theorem is referenced by: lindsind 20156 lindfrn 20160 islbs4 20171 lindsenlbs 33404 lindslininds 42253 |
| Copyright terms: Public domain | W3C validator |