MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismgm Structured version   Visualization version   Unicode version

Theorem ismgm 17243
Description: The predicate "is a magma". (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.)
Hypotheses
Ref Expression
ismgm.b  |-  B  =  ( Base `  M
)
ismgm.o  |-  .o.  =  ( +g  `  M )
Assertion
Ref Expression
ismgm  |-  ( M  e.  V  ->  ( M  e. Mgm  <->  A. x  e.  B  A. y  e.  B  ( x  .o.  y
)  e.  B ) )
Distinct variable groups:    x, B, y    x, M, y    x,  .o. , y
Allowed substitution hints:    V( x, y)

Proof of Theorem ismgm
Dummy variables  b  m  o are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvexd 6203 . . 3  |-  ( m  =  M  ->  ( Base `  m )  e. 
_V )
2 fveq2 6191 . . . 4  |-  ( m  =  M  ->  ( Base `  m )  =  ( Base `  M
) )
3 ismgm.b . . . 4  |-  B  =  ( Base `  M
)
42, 3syl6eqr 2674 . . 3  |-  ( m  =  M  ->  ( Base `  m )  =  B )
5 fvexd 6203 . . . 4  |-  ( ( m  =  M  /\  b  =  B )  ->  ( +g  `  m
)  e.  _V )
6 fveq2 6191 . . . . . 6  |-  ( m  =  M  ->  ( +g  `  m )  =  ( +g  `  M
) )
76adantr 481 . . . . 5  |-  ( ( m  =  M  /\  b  =  B )  ->  ( +g  `  m
)  =  ( +g  `  M ) )
8 ismgm.o . . . . 5  |-  .o.  =  ( +g  `  M )
97, 8syl6eqr 2674 . . . 4  |-  ( ( m  =  M  /\  b  =  B )  ->  ( +g  `  m
)  =  .o.  )
10 simplr 792 . . . . 5  |-  ( ( ( m  =  M  /\  b  =  B )  /\  o  =  .o.  )  ->  b  =  B )
11 oveq 6656 . . . . . . . 8  |-  ( o  =  .o.  ->  (
x o y )  =  ( x  .o.  y ) )
1211adantl 482 . . . . . . 7  |-  ( ( ( m  =  M  /\  b  =  B )  /\  o  =  .o.  )  ->  (
x o y )  =  ( x  .o.  y ) )
1312, 10eleq12d 2695 . . . . . 6  |-  ( ( ( m  =  M  /\  b  =  B )  /\  o  =  .o.  )  ->  (
( x o y )  e.  b  <->  ( x  .o.  y )  e.  B
) )
1410, 13raleqbidv 3152 . . . . 5  |-  ( ( ( m  =  M  /\  b  =  B )  /\  o  =  .o.  )  ->  ( A. y  e.  b 
( x o y )  e.  b  <->  A. y  e.  B  ( x  .o.  y )  e.  B
) )
1510, 14raleqbidv 3152 . . . 4  |-  ( ( ( m  =  M  /\  b  =  B )  /\  o  =  .o.  )  ->  ( A. x  e.  b  A. y  e.  b 
( x o y )  e.  b  <->  A. x  e.  B  A. y  e.  B  ( x  .o.  y )  e.  B
) )
165, 9, 15sbcied2 3473 . . 3  |-  ( ( m  =  M  /\  b  =  B )  ->  ( [. ( +g  `  m )  /  o ]. A. x  e.  b 
A. y  e.  b  ( x o y )  e.  b  <->  A. x  e.  B  A. y  e.  B  ( x  .o.  y )  e.  B
) )
171, 4, 16sbcied2 3473 . 2  |-  ( m  =  M  ->  ( [. ( Base `  m
)  /  b ]. [. ( +g  `  m
)  /  o ]. A. x  e.  b  A. y  e.  b 
( x o y )  e.  b  <->  A. x  e.  B  A. y  e.  B  ( x  .o.  y )  e.  B
) )
18 df-mgm 17242 . 2  |- Mgm  =  {
m  |  [. ( Base `  m )  / 
b ]. [. ( +g  `  m )  /  o ]. A. x  e.  b 
A. y  e.  b  ( x o y )  e.  b }
1917, 18elab2g 3353 1  |-  ( M  e.  V  ->  ( M  e. Mgm  <->  A. x  e.  B  A. y  e.  B  ( x  .o.  y
)  e.  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200   [.wsbc 3435   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941  Mgmcmgm 17240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653  df-mgm 17242
This theorem is referenced by:  ismgmn0  17244  mgmcl  17245  issstrmgm  17252  mgm0  17255  issgrpv  17286  0mgm  41774  ismgmd  41776  mgm2mgm  41863  lidlmmgm  41925
  Copyright terms: Public domain W3C validator