| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ismgmOLD | Structured version Visualization version Unicode version | ||
| Description: Obsolete version of ismgm 17243 as of 3-Feb-2020. The predicate "is a magma". (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| ismgmOLD.1 |
|
| Ref | Expression |
|---|---|
| ismgmOLD |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq1 6026 |
. . . . 5
| |
| 2 | 1 | exbidv 1850 |
. . . 4
|
| 3 | df-mgmOLD 33648 |
. . . 4
| |
| 4 | 2, 3 | elab2g 3353 |
. . 3
|
| 5 | f00 6087 |
. . . . . . . 8
| |
| 6 | dmeq 5324 |
. . . . . . . . . 10
| |
| 7 | dmeq 5324 |
. . . . . . . . . . 11
| |
| 8 | dm0 5339 |
. . . . . . . . . . . . 13
| |
| 9 | 8 | dmeqi 5325 |
. . . . . . . . . . . 12
|
| 10 | 9, 8 | eqtri 2644 |
. . . . . . . . . . 11
|
| 11 | 7, 10 | syl6req 2673 |
. . . . . . . . . 10
|
| 12 | 6, 11 | syl 17 |
. . . . . . . . 9
|
| 13 | 12 | adantr 481 |
. . . . . . . 8
|
| 14 | 5, 13 | sylbi 207 |
. . . . . . 7
|
| 15 | xpeq12 5134 |
. . . . . . . . . 10
| |
| 16 | 15 | anidms 677 |
. . . . . . . . 9
|
| 17 | feq23 6029 |
. . . . . . . . 9
| |
| 18 | 16, 17 | mpancom 703 |
. . . . . . . 8
|
| 19 | eqeq1 2626 |
. . . . . . . 8
| |
| 20 | 18, 19 | imbi12d 334 |
. . . . . . 7
|
| 21 | 14, 20 | mpbiri 248 |
. . . . . 6
|
| 22 | fdm 6051 |
. . . . . . . 8
| |
| 23 | dmeq 5324 |
. . . . . . . 8
| |
| 24 | df-ne 2795 |
. . . . . . . . . . . 12
| |
| 25 | dmxp 5344 |
. . . . . . . . . . . 12
| |
| 26 | 24, 25 | sylbir 225 |
. . . . . . . . . . 11
|
| 27 | 26 | eqeq1d 2624 |
. . . . . . . . . 10
|
| 28 | 27 | biimpcd 239 |
. . . . . . . . 9
|
| 29 | 28 | eqcoms 2630 |
. . . . . . . 8
|
| 30 | 22, 23, 29 | 3syl 18 |
. . . . . . 7
|
| 31 | 30 | com12 32 |
. . . . . 6
|
| 32 | 21, 31 | pm2.61i 176 |
. . . . 5
|
| 33 | 32 | pm4.71ri 665 |
. . . 4
|
| 34 | 33 | exbii 1774 |
. . 3
|
| 35 | 4, 34 | syl6bb 276 |
. 2
|
| 36 | dmexg 7097 |
. . 3
| |
| 37 | dmexg 7097 |
. . 3
| |
| 38 | xpeq12 5134 |
. . . . . . 7
| |
| 39 | 38 | anidms 677 |
. . . . . 6
|
| 40 | feq23 6029 |
. . . . . 6
| |
| 41 | 39, 40 | mpancom 703 |
. . . . 5
|
| 42 | ismgmOLD.1 |
. . . . . . . 8
| |
| 43 | 42 | eqcomi 2631 |
. . . . . . 7
|
| 44 | 43, 43 | xpeq12i 5137 |
. . . . . 6
|
| 45 | 44, 43 | feq23i 6039 |
. . . . 5
|
| 46 | 41, 45 | syl6bb 276 |
. . . 4
|
| 47 | 46 | ceqsexgv 3335 |
. . 3
|
| 48 | 36, 37, 47 | 3syl 18 |
. 2
|
| 49 | 35, 48 | bitrd 268 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-fun 5890 df-fn 5891 df-f 5892 df-mgmOLD 33648 |
| This theorem is referenced by: clmgmOLD 33650 opidonOLD 33651 issmgrpOLD 33662 |
| Copyright terms: Public domain | W3C validator |