| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f00 | Structured version Visualization version Unicode version | ||
| Description: A class is a function with empty codomain iff it and its domain are empty. (Contributed by NM, 10-Dec-2003.) |
| Ref | Expression |
|---|---|
| f00 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffun 6048 |
. . . . 5
| |
| 2 | frn 6053 |
. . . . . . 7
| |
| 3 | ss0 3974 |
. . . . . . 7
| |
| 4 | 2, 3 | syl 17 |
. . . . . 6
|
| 5 | dm0rn0 5342 |
. . . . . 6
| |
| 6 | 4, 5 | sylibr 224 |
. . . . 5
|
| 7 | df-fn 5891 |
. . . . 5
| |
| 8 | 1, 6, 7 | sylanbrc 698 |
. . . 4
|
| 9 | fn0 6011 |
. . . 4
| |
| 10 | 8, 9 | sylib 208 |
. . 3
|
| 11 | fdm 6051 |
. . . 4
| |
| 12 | 11, 6 | eqtr3d 2658 |
. . 3
|
| 13 | 10, 12 | jca 554 |
. 2
|
| 14 | f0 6086 |
. . 3
| |
| 15 | feq1 6026 |
. . . 4
| |
| 16 | feq2 6027 |
. . . 4
| |
| 17 | 15, 16 | sylan9bb 736 |
. . 3
|
| 18 | 14, 17 | mpbiri 248 |
. 2
|
| 19 | 13, 18 | impbii 199 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-fun 5890 df-fn 5891 df-f 5892 |
| This theorem is referenced by: cantnff 8571 0wrd0 13331 supcvg 14588 ram0 15726 itgsubstlem 23811 uhgr0vb 25967 lfuhgr1v0e 26146 wlkv0 26547 ismgmOLD 33649 |
| Copyright terms: Public domain | W3C validator |