MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismgmid2 Structured version   Visualization version   Unicode version

Theorem ismgmid2 17267
Description: Show that a given element is the identity element of a magma. (Contributed by Mario Carneiro, 27-Dec-2014.)
Hypotheses
Ref Expression
ismgmid.b  |-  B  =  ( Base `  G
)
ismgmid.o  |-  .0.  =  ( 0g `  G )
ismgmid.p  |-  .+  =  ( +g  `  G )
ismgmid2.u  |-  ( ph  ->  U  e.  B )
ismgmid2.l  |-  ( (
ph  /\  x  e.  B )  ->  ( U  .+  x )  =  x )
ismgmid2.r  |-  ( (
ph  /\  x  e.  B )  ->  (
x  .+  U )  =  x )
Assertion
Ref Expression
ismgmid2  |-  ( ph  ->  U  =  .0.  )
Distinct variable groups:    x,  .+    x,  .0.    x, B    x, G    x, U    ph, x

Proof of Theorem ismgmid2
Dummy variable  e is distinct from all other variables.
StepHypRef Expression
1 ismgmid2.u . . 3  |-  ( ph  ->  U  e.  B )
2 ismgmid2.l . . . . 5  |-  ( (
ph  /\  x  e.  B )  ->  ( U  .+  x )  =  x )
3 ismgmid2.r . . . . 5  |-  ( (
ph  /\  x  e.  B )  ->  (
x  .+  U )  =  x )
42, 3jca 554 . . . 4  |-  ( (
ph  /\  x  e.  B )  ->  (
( U  .+  x
)  =  x  /\  ( x  .+  U )  =  x ) )
54ralrimiva 2966 . . 3  |-  ( ph  ->  A. x  e.  B  ( ( U  .+  x )  =  x  /\  ( x  .+  U )  =  x ) )
6 ismgmid.b . . . 4  |-  B  =  ( Base `  G
)
7 ismgmid.o . . . 4  |-  .0.  =  ( 0g `  G )
8 ismgmid.p . . . 4  |-  .+  =  ( +g  `  G )
9 oveq1 6657 . . . . . . . . 9  |-  ( e  =  U  ->  (
e  .+  x )  =  ( U  .+  x ) )
109eqeq1d 2624 . . . . . . . 8  |-  ( e  =  U  ->  (
( e  .+  x
)  =  x  <->  ( U  .+  x )  =  x ) )
11 oveq2 6658 . . . . . . . . 9  |-  ( e  =  U  ->  (
x  .+  e )  =  ( x  .+  U ) )
1211eqeq1d 2624 . . . . . . . 8  |-  ( e  =  U  ->  (
( x  .+  e
)  =  x  <->  ( x  .+  U )  =  x ) )
1310, 12anbi12d 747 . . . . . . 7  |-  ( e  =  U  ->  (
( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x )  <->  ( ( U 
.+  x )  =  x  /\  ( x 
.+  U )  =  x ) ) )
1413ralbidv 2986 . . . . . 6  |-  ( e  =  U  ->  ( A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x )  <->  A. x  e.  B  ( ( U  .+  x )  =  x  /\  ( x  .+  U )  =  x ) ) )
1514rspcev 3309 . . . . 5  |-  ( ( U  e.  B  /\  A. x  e.  B  ( ( U  .+  x
)  =  x  /\  ( x  .+  U )  =  x ) )  ->  E. e  e.  B  A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x ) )
161, 5, 15syl2anc 693 . . . 4  |-  ( ph  ->  E. e  e.  B  A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x ) )
176, 7, 8, 16ismgmid 17264 . . 3  |-  ( ph  ->  ( ( U  e.  B  /\  A. x  e.  B  ( ( U  .+  x )  =  x  /\  ( x 
.+  U )  =  x ) )  <->  .0.  =  U ) )
181, 5, 17mpbi2and 956 . 2  |-  ( ph  ->  .0.  =  U )
1918eqcomd 2628 1  |-  ( ph  ->  U  =  .0.  )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941   0gc0g 16100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-riota 6611  df-ov 6653  df-0g 16102
This theorem is referenced by:  grpidd  17268  submnd0  17320  mnd1id  17332  frmd0  17397  mhmid  17536  cnaddid  18273  ringidss  18577  xrs10  19785
  Copyright terms: Public domain W3C validator