MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnvc2 Structured version   Visualization version   Unicode version

Theorem isnvc2 22503
Description: A normed vector space is just a normed module whose scalar ring is a division ring. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypothesis
Ref Expression
isnvc2.1  |-  F  =  (Scalar `  W )
Assertion
Ref Expression
isnvc2  |-  ( W  e. NrmVec 
<->  ( W  e. NrmMod  /\  F  e.  DivRing ) )

Proof of Theorem isnvc2
StepHypRef Expression
1 isnvc 22499 . 2  |-  ( W  e. NrmVec 
<->  ( W  e. NrmMod  /\  W  e.  LVec ) )
2 nlmlmod 22482 . . . 4  |-  ( W  e. NrmMod  ->  W  e.  LMod )
3 isnvc2.1 . . . . . 6  |-  F  =  (Scalar `  W )
43islvec 19104 . . . . 5  |-  ( W  e.  LVec  <->  ( W  e. 
LMod  /\  F  e.  DivRing ) )
54baib 944 . . . 4  |-  ( W  e.  LMod  ->  ( W  e.  LVec  <->  F  e.  DivRing ) )
62, 5syl 17 . . 3  |-  ( W  e. NrmMod  ->  ( W  e. 
LVec 
<->  F  e.  DivRing ) )
76pm5.32i 669 . 2  |-  ( ( W  e. NrmMod  /\  W  e. 
LVec )  <->  ( W  e. NrmMod  /\  F  e.  DivRing ) )
81, 7bitri 264 1  |-  ( W  e. NrmVec 
<->  ( W  e. NrmMod  /\  F  e.  DivRing ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   ` cfv 5888  Scalarcsca 15944   DivRingcdr 18747   LModclmod 18863   LVecclvec 19102  NrmModcnlm 22385  NrmVeccnvc 22386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653  df-lvec 19103  df-nlm 22391  df-nvc 22392
This theorem is referenced by:  lssnvc  22506  srabn  23156
  Copyright terms: Public domain W3C validator