MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnvi Structured version   Visualization version   Unicode version

Theorem isnvi 27468
Description: Properties that determine a normed complex vector space. (Contributed by NM, 15-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
isnvi.5  |-  X  =  ran  G
isnvi.6  |-  Z  =  (GId `  G )
isnvi.7  |-  <. G ,  S >.  e.  CVecOLD
isnvi.8  |-  N : X
--> RR
isnvi.9  |-  ( ( x  e.  X  /\  ( N `  x )  =  0 )  ->  x  =  Z )
isnvi.10  |-  ( ( y  e.  CC  /\  x  e.  X )  ->  ( N `  (
y S x ) )  =  ( ( abs `  y )  x.  ( N `  x ) ) )
isnvi.11  |-  ( ( x  e.  X  /\  y  e.  X )  ->  ( N `  (
x G y ) )  <_  ( ( N `  x )  +  ( N `  y ) ) )
isnvi.12  |-  U  = 
<. <. G ,  S >. ,  N >.
Assertion
Ref Expression
isnvi  |-  U  e.  NrmCVec
Distinct variable groups:    x, y, G    x, N, y    x, S, y    x, X, y
Allowed substitution hints:    U( x, y)    Z( x, y)

Proof of Theorem isnvi
StepHypRef Expression
1 isnvi.12 . 2  |-  U  = 
<. <. G ,  S >. ,  N >.
2 isnvi.7 . . 3  |-  <. G ,  S >.  e.  CVecOLD
3 isnvi.8 . . 3  |-  N : X
--> RR
4 isnvi.9 . . . . . 6  |-  ( ( x  e.  X  /\  ( N `  x )  =  0 )  ->  x  =  Z )
54ex 450 . . . . 5  |-  ( x  e.  X  ->  (
( N `  x
)  =  0  ->  x  =  Z )
)
6 isnvi.10 . . . . . . 7  |-  ( ( y  e.  CC  /\  x  e.  X )  ->  ( N `  (
y S x ) )  =  ( ( abs `  y )  x.  ( N `  x ) ) )
76ancoms 469 . . . . . 6  |-  ( ( x  e.  X  /\  y  e.  CC )  ->  ( N `  (
y S x ) )  =  ( ( abs `  y )  x.  ( N `  x ) ) )
87ralrimiva 2966 . . . . 5  |-  ( x  e.  X  ->  A. y  e.  CC  ( N `  ( y S x ) )  =  ( ( abs `  y
)  x.  ( N `
 x ) ) )
9 isnvi.11 . . . . . 6  |-  ( ( x  e.  X  /\  y  e.  X )  ->  ( N `  (
x G y ) )  <_  ( ( N `  x )  +  ( N `  y ) ) )
109ralrimiva 2966 . . . . 5  |-  ( x  e.  X  ->  A. y  e.  X  ( N `  ( x G y ) )  <_  (
( N `  x
)  +  ( N `
 y ) ) )
115, 8, 103jca 1242 . . . 4  |-  ( x  e.  X  ->  (
( ( N `  x )  =  0  ->  x  =  Z )  /\  A. y  e.  CC  ( N `  ( y S x ) )  =  ( ( abs `  y
)  x.  ( N `
 x ) )  /\  A. y  e.  X  ( N `  ( x G y ) )  <_  (
( N `  x
)  +  ( N `
 y ) ) ) )
1211rgen 2922 . . 3  |-  A. x  e.  X  ( (
( N `  x
)  =  0  ->  x  =  Z )  /\  A. y  e.  CC  ( N `  ( y S x ) )  =  ( ( abs `  y )  x.  ( N `  x )
)  /\  A. y  e.  X  ( N `  ( x G y ) )  <_  (
( N `  x
)  +  ( N `
 y ) ) )
13 isnvi.5 . . . 4  |-  X  =  ran  G
14 isnvi.6 . . . 4  |-  Z  =  (GId `  G )
1513, 14isnv 27467 . . 3  |-  ( <. <. G ,  S >. ,  N >.  e.  NrmCVec  <->  ( <. G ,  S >.  e.  CVecOLD 
/\  N : X --> RR  /\  A. x  e.  X  ( ( ( N `  x )  =  0  ->  x  =  Z )  /\  A. y  e.  CC  ( N `  ( y S x ) )  =  ( ( abs `  y )  x.  ( N `  x )
)  /\  A. y  e.  X  ( N `  ( x G y ) )  <_  (
( N `  x
)  +  ( N `
 y ) ) ) ) )
162, 3, 12, 15mpbir3an 1244 . 2  |-  <. <. G ,  S >. ,  N >.  e.  NrmCVec
171, 16eqeltri 2697 1  |-  U  e.  NrmCVec
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   <.cop 4183   class class class wbr 4653   ran crn 5115   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936    + caddc 9939    x. cmul 9941    <_ cle 10075   abscabs 13974  GIdcgi 27344   CVecOLDcvc 27413   NrmCVeccnv 27439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-vc 27414  df-nv 27447
This theorem is referenced by:  cnnv  27532  hhnv  28022  hhssnv  28121
  Copyright terms: Public domain W3C validator