| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nvi | Structured version Visualization version Unicode version | ||
| Description: The properties of a normed complex vector space, which is a vector space accompanied by a norm. (Contributed by NM, 11-Nov-2006.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nvi.1 |
|
| nvi.2 |
|
| nvi.4 |
|
| nvi.5 |
|
| nvi.6 |
|
| Ref | Expression |
|---|---|
| nvi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2622 |
. . . . . 6
| |
| 2 | nvi.6 |
. . . . . 6
| |
| 3 | 1, 2 | nvop2 27463 |
. . . . 5
|
| 4 | nvi.2 |
. . . . . . 7
| |
| 5 | nvi.4 |
. . . . . . 7
| |
| 6 | 1, 4, 5 | nvvop 27464 |
. . . . . 6
|
| 7 | 6 | opeq1d 4408 |
. . . . 5
|
| 8 | 3, 7 | eqtrd 2656 |
. . . 4
|
| 9 | id 22 |
. . . 4
| |
| 10 | 8, 9 | eqeltrrd 2702 |
. . 3
|
| 11 | nvi.1 |
. . . . 5
| |
| 12 | 11, 4 | bafval 27459 |
. . . 4
|
| 13 | eqid 2622 |
. . . 4
| |
| 14 | 12, 13 | isnv 27467 |
. . 3
|
| 15 | 10, 14 | sylib 208 |
. 2
|
| 16 | nvi.5 |
. . . . . . . 8
| |
| 17 | 4, 16 | 0vfval 27461 |
. . . . . . 7
|
| 18 | 17 | eqeq2d 2632 |
. . . . . 6
|
| 19 | 18 | imbi2d 330 |
. . . . 5
|
| 20 | 19 | 3anbi1d 1403 |
. . . 4
|
| 21 | 20 | ralbidv 2986 |
. . 3
|
| 22 | 21 | 3anbi3d 1405 |
. 2
|
| 23 | 15, 22 | mpbird 247 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-1st 7168 df-2nd 7169 df-vc 27414 df-nv 27447 df-va 27450 df-ba 27451 df-sm 27452 df-0v 27453 df-nmcv 27455 |
| This theorem is referenced by: nvvc 27470 nvf 27515 nvs 27518 nvz 27524 nvtri 27525 |
| Copyright terms: Public domain | W3C validator |