| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isnvlem | Structured version Visualization version Unicode version | ||
| Description: Lemma for isnv 27467. (Contributed by NM, 11-Nov-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| isnvlem.1 |
|
| isnvlem.2 |
|
| Ref | Expression |
|---|---|
| isnvlem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nv 27447 |
. . 3
| |
| 2 | 1 | eleq2i 2693 |
. 2
|
| 3 | opeq1 4402 |
. . . . 5
| |
| 4 | 3 | eleq1d 2686 |
. . . 4
|
| 5 | rneq 5351 |
. . . . . 6
| |
| 6 | isnvlem.1 |
. . . . . 6
| |
| 7 | 5, 6 | syl6eqr 2674 |
. . . . 5
|
| 8 | 7 | feq2d 6031 |
. . . 4
|
| 9 | fveq2 6191 |
. . . . . . . . 9
| |
| 10 | isnvlem.2 |
. . . . . . . . 9
| |
| 11 | 9, 10 | syl6eqr 2674 |
. . . . . . . 8
|
| 12 | 11 | eqeq2d 2632 |
. . . . . . 7
|
| 13 | 12 | imbi2d 330 |
. . . . . 6
|
| 14 | oveq 6656 |
. . . . . . . . 9
| |
| 15 | 14 | fveq2d 6195 |
. . . . . . . 8
|
| 16 | 15 | breq1d 4663 |
. . . . . . 7
|
| 17 | 7, 16 | raleqbidv 3152 |
. . . . . 6
|
| 18 | 13, 17 | 3anbi13d 1401 |
. . . . 5
|
| 19 | 7, 18 | raleqbidv 3152 |
. . . 4
|
| 20 | 4, 8, 19 | 3anbi123d 1399 |
. . 3
|
| 21 | opeq2 4403 |
. . . . 5
| |
| 22 | 21 | eleq1d 2686 |
. . . 4
|
| 23 | oveq 6656 |
. . . . . . . . 9
| |
| 24 | 23 | fveq2d 6195 |
. . . . . . . 8
|
| 25 | 24 | eqeq1d 2624 |
. . . . . . 7
|
| 26 | 25 | ralbidv 2986 |
. . . . . 6
|
| 27 | 26 | 3anbi2d 1404 |
. . . . 5
|
| 28 | 27 | ralbidv 2986 |
. . . 4
|
| 29 | 22, 28 | 3anbi13d 1401 |
. . 3
|
| 30 | feq1 6026 |
. . . 4
| |
| 31 | fveq1 6190 |
. . . . . . . 8
| |
| 32 | 31 | eqeq1d 2624 |
. . . . . . 7
|
| 33 | 32 | imbi1d 331 |
. . . . . 6
|
| 34 | fveq1 6190 |
. . . . . . . 8
| |
| 35 | 31 | oveq2d 6666 |
. . . . . . . 8
|
| 36 | 34, 35 | eqeq12d 2637 |
. . . . . . 7
|
| 37 | 36 | ralbidv 2986 |
. . . . . 6
|
| 38 | fveq1 6190 |
. . . . . . . 8
| |
| 39 | fveq1 6190 |
. . . . . . . . 9
| |
| 40 | 31, 39 | oveq12d 6668 |
. . . . . . . 8
|
| 41 | 38, 40 | breq12d 4666 |
. . . . . . 7
|
| 42 | 41 | ralbidv 2986 |
. . . . . 6
|
| 43 | 33, 37, 42 | 3anbi123d 1399 |
. . . . 5
|
| 44 | 43 | ralbidv 2986 |
. . . 4
|
| 45 | 30, 44 | 3anbi23d 1402 |
. . 3
|
| 46 | 20, 29, 45 | eloprabg 6748 |
. 2
|
| 47 | 2, 46 | syl5bb 272 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-ov 6653 df-oprab 6654 df-nv 27447 |
| This theorem is referenced by: isnv 27467 |
| Copyright terms: Public domain | W3C validator |