MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvvop Structured version   Visualization version   Unicode version

Theorem nvvop 27464
Description: The vector space component of a normed complex vector space is an ordered pair of the underlying group and a scalar product. (Contributed by NM, 28-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvvop.1  |-  W  =  ( 1st `  U
)
nvvop.2  |-  G  =  ( +v `  U
)
nvvop.4  |-  S  =  ( .sOLD `  U )
Assertion
Ref Expression
nvvop  |-  ( U  e.  NrmCVec  ->  W  =  <. G ,  S >. )

Proof of Theorem nvvop
StepHypRef Expression
1 vcrel 27415 . . 3  |-  Rel  CVecOLD
2 nvss 27448 . . . . 5  |-  NrmCVec  C_  ( CVecOLD  X.  _V )
3 nvvop.1 . . . . . . . 8  |-  W  =  ( 1st `  U
)
4 eqid 2622 . . . . . . . 8  |-  ( normCV `  U )  =  (
normCV
`  U )
53, 4nvop2 27463 . . . . . . 7  |-  ( U  e.  NrmCVec  ->  U  =  <. W ,  ( normCV `  U
) >. )
65eleq1d 2686 . . . . . 6  |-  ( U  e.  NrmCVec  ->  ( U  e.  NrmCVec  <->  <. W ,  ( normCV `  U
) >.  e.  NrmCVec ) )
76ibi 256 . . . . 5  |-  ( U  e.  NrmCVec  ->  <. W ,  (
normCV
`  U ) >.  e.  NrmCVec )
82, 7sseldi 3601 . . . 4  |-  ( U  e.  NrmCVec  ->  <. W ,  (
normCV
`  U ) >.  e.  ( CVecOLD  X.  _V ) )
9 opelxp1 5150 . . . 4  |-  ( <. W ,  ( normCV `  U
) >.  e.  ( CVecOLD  X.  _V )  ->  W  e.  CVecOLD )
108, 9syl 17 . . 3  |-  ( U  e.  NrmCVec  ->  W  e.  CVecOLD )
11 1st2nd 7214 . . 3  |-  ( ( Rel  CVecOLD  /\  W  e.  CVecOLD )  ->  W  =  <. ( 1st `  W ) ,  ( 2nd `  W )
>. )
121, 10, 11sylancr 695 . 2  |-  ( U  e.  NrmCVec  ->  W  =  <. ( 1st `  W ) ,  ( 2nd `  W
) >. )
13 nvvop.2 . . . . 5  |-  G  =  ( +v `  U
)
1413vafval 27458 . . . 4  |-  G  =  ( 1st `  ( 1st `  U ) )
153fveq2i 6194 . . . 4  |-  ( 1st `  W )  =  ( 1st `  ( 1st `  U ) )
1614, 15eqtr4i 2647 . . 3  |-  G  =  ( 1st `  W
)
17 nvvop.4 . . . . 5  |-  S  =  ( .sOLD `  U )
1817smfval 27460 . . . 4  |-  S  =  ( 2nd `  ( 1st `  U ) )
193fveq2i 6194 . . . 4  |-  ( 2nd `  W )  =  ( 2nd `  ( 1st `  U ) )
2018, 19eqtr4i 2647 . . 3  |-  S  =  ( 2nd `  W
)
2116, 20opeq12i 4407 . 2  |-  <. G ,  S >.  =  <. ( 1st `  W ) ,  ( 2nd `  W
) >.
2212, 21syl6eqr 2674 1  |-  ( U  e.  NrmCVec  ->  W  =  <. G ,  S >. )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   _Vcvv 3200   <.cop 4183    X. cxp 5112   Rel wrel 5119   ` cfv 5888   1stc1st 7166   2ndc2nd 7167   CVecOLDcvc 27413   NrmCVeccnv 27439   +vcpv 27440   .sOLDcns 27442   normCVcnmcv 27445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fo 5894  df-fv 5896  df-oprab 6654  df-1st 7168  df-2nd 7169  df-vc 27414  df-nv 27447  df-va 27450  df-sm 27452  df-nmcv 27455
This theorem is referenced by:  nvi  27469  nvvc  27470  nvop  27531
  Copyright terms: Public domain W3C validator