MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isof1oopb Structured version   Visualization version   Unicode version

Theorem isof1oopb 6575
Description: A function is a bijection iff it is an isomorphism regarding the universal class of ordered pairs as relations. (Contributed by AV, 9-May-2021.)
Assertion
Ref Expression
isof1oopb  |-  ( H : A -1-1-onto-> B  <->  H  Isom  ( _V 
X.  _V ) ,  ( _V  X.  _V )
( A ,  B
) )

Proof of Theorem isof1oopb
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6201 . . . . . . . . 9  |-  ( H `
 x )  e. 
_V
2 fvex 6201 . . . . . . . . 9  |-  ( H `
 y )  e. 
_V
31, 2opelvv 5166 . . . . . . . 8  |-  <. ( H `  x ) ,  ( H `  y ) >.  e.  ( _V  X.  _V )
4 df-br 4654 . . . . . . . 8  |-  ( ( H `  x ) ( _V  X.  _V ) ( H `  y )  <->  <. ( H `
 x ) ,  ( H `  y
) >.  e.  ( _V 
X.  _V ) )
53, 4mpbir 221 . . . . . . 7  |-  ( H `
 x ) ( _V  X.  _V )
( H `  y
)
65a1i 11 . . . . . 6  |-  ( x ( _V  X.  _V ) y  ->  ( H `  x )
( _V  X.  _V ) ( H `  y ) )
7 opelvvg 5165 . . . . . . . 8  |-  ( ( x  e.  A  /\  y  e.  A )  -> 
<. x ,  y >.  e.  ( _V  X.  _V ) )
8 df-br 4654 . . . . . . . 8  |-  ( x ( _V  X.  _V ) y  <->  <. x ,  y >.  e.  ( _V  X.  _V ) )
97, 8sylibr 224 . . . . . . 7  |-  ( ( x  e.  A  /\  y  e.  A )  ->  x ( _V  X.  _V ) y )
109a1d 25 . . . . . 6  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( ( H `  x ) ( _V 
X.  _V ) ( H `
 y )  ->  x ( _V  X.  _V ) y ) )
116, 10impbid2 216 . . . . 5  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( x ( _V 
X.  _V ) y  <->  ( H `  x ) ( _V 
X.  _V ) ( H `
 y ) ) )
1211adantl 482 . . . 4  |-  ( ( H : A -1-1-onto-> B  /\  ( x  e.  A  /\  y  e.  A
) )  ->  (
x ( _V  X.  _V ) y  <->  ( H `  x ) ( _V 
X.  _V ) ( H `
 y ) ) )
1312ralrimivva 2971 . . 3  |-  ( H : A -1-1-onto-> B  ->  A. x  e.  A  A. y  e.  A  ( x
( _V  X.  _V ) y  <->  ( H `  x ) ( _V 
X.  _V ) ( H `
 y ) ) )
1413pm4.71i 664 . 2  |-  ( H : A -1-1-onto-> B  <->  ( H : A
-1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x ( _V  X.  _V )
y  <->  ( H `  x ) ( _V 
X.  _V ) ( H `
 y ) ) ) )
15 df-isom 5897 . 2  |-  ( H 
Isom  ( _V  X.  _V ) ,  ( _V 
X.  _V ) ( A ,  B )  <->  ( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x
( _V  X.  _V ) y  <->  ( H `  x ) ( _V 
X.  _V ) ( H `
 y ) ) ) )
1614, 15bitr4i 267 1  |-  ( H : A -1-1-onto-> B  <->  H  Isom  ( _V 
X.  _V ) ,  ( _V  X.  _V )
( A ,  B
) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    e. wcel 1990   A.wral 2912   _Vcvv 3200   <.cop 4183   class class class wbr 4653    X. cxp 5112   -1-1-onto->wf1o 5887   ` cfv 5888    Isom wiso 5889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-iota 5851  df-fv 5896  df-isom 5897
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator