MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isof1oidb Structured version   Visualization version   Unicode version

Theorem isof1oidb 6574
Description: A function is a bijection iff it is an isomorphism regarding the identity relation. (Contributed by AV, 9-May-2021.)
Assertion
Ref Expression
isof1oidb  |-  ( H : A -1-1-onto-> B  <->  H  Isom  _I  ,  _I  ( A ,  B
) )

Proof of Theorem isof1oidb
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1of1 6136 . . . . . 6  |-  ( H : A -1-1-onto-> B  ->  H : A -1-1-> B )
2 f1fveq 6519 . . . . . 6  |-  ( ( H : A -1-1-> B  /\  ( x  e.  A  /\  y  e.  A
) )  ->  (
( H `  x
)  =  ( H `
 y )  <->  x  =  y ) )
31, 2sylan 488 . . . . 5  |-  ( ( H : A -1-1-onto-> B  /\  ( x  e.  A  /\  y  e.  A
) )  ->  (
( H `  x
)  =  ( H `
 y )  <->  x  =  y ) )
4 fvex 6201 . . . . . . 7  |-  ( H `
 y )  e. 
_V
54ideq 5274 . . . . . 6  |-  ( ( H `  x )  _I  ( H `  y )  <->  ( H `  x )  =  ( H `  y ) )
65a1i 11 . . . . 5  |-  ( ( H : A -1-1-onto-> B  /\  ( x  e.  A  /\  y  e.  A
) )  ->  (
( H `  x
)  _I  ( H `
 y )  <->  ( H `  x )  =  ( H `  y ) ) )
7 ideqg 5273 . . . . . 6  |-  ( y  e.  A  ->  (
x  _I  y  <->  x  =  y ) )
87ad2antll 765 . . . . 5  |-  ( ( H : A -1-1-onto-> B  /\  ( x  e.  A  /\  y  e.  A
) )  ->  (
x  _I  y  <->  x  =  y ) )
93, 6, 83bitr4rd 301 . . . 4  |-  ( ( H : A -1-1-onto-> B  /\  ( x  e.  A  /\  y  e.  A
) )  ->  (
x  _I  y  <->  ( H `  x )  _I  ( H `  y )
) )
109ralrimivva 2971 . . 3  |-  ( H : A -1-1-onto-> B  ->  A. x  e.  A  A. y  e.  A  ( x  _I  y  <->  ( H `  x )  _I  ( H `  y )
) )
1110pm4.71i 664 . 2  |-  ( H : A -1-1-onto-> B  <->  ( H : A
-1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x  _I  y  <->  ( H `  x )  _I  ( H `  y )
) ) )
12 df-isom 5897 . 2  |-  ( H 
Isom  _I  ,  _I  ( A ,  B )  <-> 
( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x  _I  y  <->  ( H `  x )  _I  ( H `  y ) ) ) )
1311, 12bitr4i 267 1  |-  ( H : A -1-1-onto-> B  <->  H  Isom  _I  ,  _I  ( A ,  B
) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   class class class wbr 4653    _I cid 5023   -1-1->wf1 5885   -1-1-onto->wf1o 5887   ` cfv 5888    Isom wiso 5889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-f1o 5895  df-fv 5896  df-isom 5897
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator