| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isotone1 | Structured version Visualization version Unicode version | ||
| Description: Two different ways to say subset relation persists across applications of a function. (Contributed by RP, 31-May-2021.) |
| Ref | Expression |
|---|---|
| isotone1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1 3626 |
. . . 4
| |
| 2 | fveq2 6191 |
. . . . 5
| |
| 3 | 2 | sseq1d 3632 |
. . . 4
|
| 4 | 1, 3 | imbi12d 334 |
. . 3
|
| 5 | sseq2 3627 |
. . . 4
| |
| 6 | fveq2 6191 |
. . . . 5
| |
| 7 | 6 | sseq2d 3633 |
. . . 4
|
| 8 | 5, 7 | imbi12d 334 |
. . 3
|
| 9 | 4, 8 | cbvral2v 3179 |
. 2
|
| 10 | ssun1 3776 |
. . . . . 6
| |
| 11 | simprl 794 |
. . . . . . 7
| |
| 12 | elpwi 4168 |
. . . . . . . . . . 11
| |
| 13 | 12 | adantr 481 |
. . . . . . . . . 10
|
| 14 | elpwi 4168 |
. . . . . . . . . . 11
| |
| 15 | 14 | adantl 482 |
. . . . . . . . . 10
|
| 16 | 13, 15 | unssd 3789 |
. . . . . . . . 9
|
| 17 | vex 3203 |
. . . . . . . . . . 11
| |
| 18 | vex 3203 |
. . . . . . . . . . 11
| |
| 19 | 17, 18 | unex 6956 |
. . . . . . . . . 10
|
| 20 | 19 | elpw 4164 |
. . . . . . . . 9
|
| 21 | 16, 20 | sylibr 224 |
. . . . . . . 8
|
| 22 | 21 | adantl 482 |
. . . . . . 7
|
| 23 | simpl 473 |
. . . . . . 7
| |
| 24 | sseq1 3626 |
. . . . . . . . 9
| |
| 25 | fveq2 6191 |
. . . . . . . . . 10
| |
| 26 | 25 | sseq1d 3632 |
. . . . . . . . 9
|
| 27 | 24, 26 | imbi12d 334 |
. . . . . . . 8
|
| 28 | sseq2 3627 |
. . . . . . . . 9
| |
| 29 | fveq2 6191 |
. . . . . . . . . 10
| |
| 30 | 29 | sseq2d 3633 |
. . . . . . . . 9
|
| 31 | 28, 30 | imbi12d 334 |
. . . . . . . 8
|
| 32 | 27, 31 | rspc2va 3323 |
. . . . . . 7
|
| 33 | 11, 22, 23, 32 | syl21anc 1325 |
. . . . . 6
|
| 34 | 10, 33 | mpi 20 |
. . . . 5
|
| 35 | ssun2 3777 |
. . . . . 6
| |
| 36 | simprr 796 |
. . . . . . 7
| |
| 37 | sseq1 3626 |
. . . . . . . . 9
| |
| 38 | fveq2 6191 |
. . . . . . . . . 10
| |
| 39 | 38 | sseq1d 3632 |
. . . . . . . . 9
|
| 40 | 37, 39 | imbi12d 334 |
. . . . . . . 8
|
| 41 | sseq2 3627 |
. . . . . . . . 9
| |
| 42 | 29 | sseq2d 3633 |
. . . . . . . . 9
|
| 43 | 41, 42 | imbi12d 334 |
. . . . . . . 8
|
| 44 | 40, 43 | rspc2va 3323 |
. . . . . . 7
|
| 45 | 36, 22, 23, 44 | syl21anc 1325 |
. . . . . 6
|
| 46 | 35, 45 | mpi 20 |
. . . . 5
|
| 47 | 34, 46 | unssd 3789 |
. . . 4
|
| 48 | 47 | ralrimivva 2971 |
. . 3
|
| 49 | ssequn1 3783 |
. . . . 5
| |
| 50 | 2 | uneq1d 3766 |
. . . . . . . . . . . 12
|
| 51 | uneq1 3760 |
. . . . . . . . . . . . 13
| |
| 52 | 51 | fveq2d 6195 |
. . . . . . . . . . . 12
|
| 53 | 50, 52 | sseq12d 3634 |
. . . . . . . . . . 11
|
| 54 | 6 | uneq2d 3767 |
. . . . . . . . . . . 12
|
| 55 | uneq2 3761 |
. . . . . . . . . . . . 13
| |
| 56 | 55 | fveq2d 6195 |
. . . . . . . . . . . 12
|
| 57 | 54, 56 | sseq12d 3634 |
. . . . . . . . . . 11
|
| 58 | 53, 57 | rspc2va 3323 |
. . . . . . . . . 10
|
| 59 | 58 | ancoms 469 |
. . . . . . . . 9
|
| 60 | 59 | unssad 3790 |
. . . . . . . 8
|
| 61 | 60 | adantr 481 |
. . . . . . 7
|
| 62 | fveq2 6191 |
. . . . . . . 8
| |
| 63 | 62 | adantl 482 |
. . . . . . 7
|
| 64 | 61, 63 | sseqtrd 3641 |
. . . . . 6
|
| 65 | 64 | ex 450 |
. . . . 5
|
| 66 | 49, 65 | syl5bi 232 |
. . . 4
|
| 67 | 66 | ralrimivva 2971 |
. . 3
|
| 68 | 48, 67 | impbii 199 |
. 2
|
| 69 | 9, 68 | bitri 264 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |