| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iss | Structured version Visualization version Unicode version | ||
| Description: A subclass of the identity function is the identity function restricted to its domain. (Contributed by NM, 13-Dec-2003.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| iss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3597 |
. . . . . . 7
| |
| 2 | vex 3203 |
. . . . . . . . 9
| |
| 3 | vex 3203 |
. . . . . . . . 9
| |
| 4 | 2, 3 | opeldm 5328 |
. . . . . . . 8
|
| 5 | 4 | a1i 11 |
. . . . . . 7
|
| 6 | 1, 5 | jcad 555 |
. . . . . 6
|
| 7 | df-br 4654 |
. . . . . . . . 9
| |
| 8 | 3 | ideq 5274 |
. . . . . . . . 9
|
| 9 | 7, 8 | bitr3i 266 |
. . . . . . . 8
|
| 10 | 2 | eldm2 5322 |
. . . . . . . . . 10
|
| 11 | opeq2 4403 |
. . . . . . . . . . . . . . 15
| |
| 12 | 11 | eleq1d 2686 |
. . . . . . . . . . . . . 14
|
| 13 | 12 | biimprcd 240 |
. . . . . . . . . . . . 13
|
| 14 | 9, 13 | syl5bi 232 |
. . . . . . . . . . . 12
|
| 15 | 1, 14 | sylcom 30 |
. . . . . . . . . . 11
|
| 16 | 15 | exlimdv 1861 |
. . . . . . . . . 10
|
| 17 | 10, 16 | syl5bi 232 |
. . . . . . . . 9
|
| 18 | 12 | imbi2d 330 |
. . . . . . . . 9
|
| 19 | 17, 18 | syl5ibcom 235 |
. . . . . . . 8
|
| 20 | 9, 19 | syl5bi 232 |
. . . . . . 7
|
| 21 | 20 | impd 447 |
. . . . . 6
|
| 22 | 6, 21 | impbid 202 |
. . . . 5
|
| 23 | 3 | opelres 5401 |
. . . . 5
|
| 24 | 22, 23 | syl6bbr 278 |
. . . 4
|
| 25 | 24 | alrimivv 1856 |
. . 3
|
| 26 | reli 5249 |
. . . . 5
| |
| 27 | relss 5206 |
. . . . 5
| |
| 28 | 26, 27 | mpi 20 |
. . . 4
|
| 29 | relres 5426 |
. . . 4
| |
| 30 | eqrel 5209 |
. . . 4
| |
| 31 | 28, 29, 30 | sylancl 694 |
. . 3
|
| 32 | 25, 31 | mpbird 247 |
. 2
|
| 33 | resss 5422 |
. . 3
| |
| 34 | sseq1 3626 |
. . 3
| |
| 35 | 33, 34 | mpbiri 248 |
. 2
|
| 36 | 32, 35 | impbii 199 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-dm 5124 df-res 5126 |
| This theorem is referenced by: funcocnv2 6161 trust 22033 |
| Copyright terms: Public domain | W3C validator |