![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opeldm | Structured version Visualization version Unicode version |
Description: Membership of first of an ordered pair in a domain. (Contributed by NM, 30-Jul-1995.) |
Ref | Expression |
---|---|
opeldm.1 |
![]() ![]() ![]() ![]() |
opeldm.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
opeldm |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeldm.2 |
. . 3
![]() ![]() ![]() ![]() | |
2 | opeq2 4403 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | eleq1d 2686 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | spcev 3300 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | opeldm.1 |
. . 3
![]() ![]() ![]() ![]() | |
6 | 5 | eldm2 5322 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 4, 6 | sylibr 224 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-dm 5124 |
This theorem is referenced by: breldm 5329 elreldm 5350 relssres 5437 iss 5447 imadmrn 5476 dfco2a 5635 funssres 5930 funun 5932 tz7.48-1 7538 iiner 7819 r0weon 8835 axdc3lem2 9273 uzrdgfni 12757 imasaddfnlem 16188 imasvscafn 16197 cicsym 16464 gsum2d 18371 cffldtocusgr 26343 dfcnv2 29476 bnj1379 30901 iss2 34112 rfovcnvf1od 38298 |
Copyright terms: Public domain | W3C validator |