| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > issubgr2 | Structured version Visualization version Unicode version | ||
| Description: The property of a set to be a subgraph of a set whose edge function is actually a function. (Contributed by AV, 20-Nov-2020.) |
| Ref | Expression |
|---|---|
| issubgr.v |
|
| issubgr.a |
|
| issubgr.i |
|
| issubgr.b |
|
| issubgr.e |
|
| Ref | Expression |
|---|---|
| issubgr2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issubgr.v |
. . . 4
| |
| 2 | issubgr.a |
. . . 4
| |
| 3 | issubgr.i |
. . . 4
| |
| 4 | issubgr.b |
. . . 4
| |
| 5 | issubgr.e |
. . . 4
| |
| 6 | 1, 2, 3, 4, 5 | issubgr 26163 |
. . 3
|
| 7 | 6 | 3adant2 1080 |
. 2
|
| 8 | resss 5422 |
. . . . 5
| |
| 9 | sseq1 3626 |
. . . . 5
| |
| 10 | 8, 9 | mpbiri 248 |
. . . 4
|
| 11 | funssres 5930 |
. . . . . . 7
| |
| 12 | 11 | eqcomd 2628 |
. . . . . 6
|
| 13 | 12 | ex 450 |
. . . . 5
|
| 14 | 13 | 3ad2ant2 1083 |
. . . 4
|
| 15 | 10, 14 | impbid2 216 |
. . 3
|
| 16 | 15 | 3anbi2d 1404 |
. 2
|
| 17 | 7, 16 | bitrd 268 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-res 5126 df-iota 5851 df-fun 5890 df-fv 5896 df-subgr 26160 |
| This theorem is referenced by: uhgrspansubgr 26183 |
| Copyright terms: Public domain | W3C validator |