MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubgr2 Structured version   Visualization version   Unicode version

Theorem issubgr2 26164
Description: The property of a set to be a subgraph of a set whose edge function is actually a function. (Contributed by AV, 20-Nov-2020.)
Hypotheses
Ref Expression
issubgr.v  |-  V  =  (Vtx `  S )
issubgr.a  |-  A  =  (Vtx `  G )
issubgr.i  |-  I  =  (iEdg `  S )
issubgr.b  |-  B  =  (iEdg `  G )
issubgr.e  |-  E  =  (Edg `  S )
Assertion
Ref Expression
issubgr2  |-  ( ( G  e.  W  /\  Fun  B  /\  S  e.  U )  ->  ( S SubGraph  G  <->  ( V  C_  A  /\  I  C_  B  /\  E  C_  ~P V
) ) )

Proof of Theorem issubgr2
StepHypRef Expression
1 issubgr.v . . . 4  |-  V  =  (Vtx `  S )
2 issubgr.a . . . 4  |-  A  =  (Vtx `  G )
3 issubgr.i . . . 4  |-  I  =  (iEdg `  S )
4 issubgr.b . . . 4  |-  B  =  (iEdg `  G )
5 issubgr.e . . . 4  |-  E  =  (Edg `  S )
61, 2, 3, 4, 5issubgr 26163 . . 3  |-  ( ( G  e.  W  /\  S  e.  U )  ->  ( S SubGraph  G  <->  ( V  C_  A  /\  I  =  ( B  |`  dom  I
)  /\  E  C_  ~P V ) ) )
763adant2 1080 . 2  |-  ( ( G  e.  W  /\  Fun  B  /\  S  e.  U )  ->  ( S SubGraph  G  <->  ( V  C_  A  /\  I  =  ( B  |`  dom  I )  /\  E  C_  ~P V ) ) )
8 resss 5422 . . . . 5  |-  ( B  |`  dom  I )  C_  B
9 sseq1 3626 . . . . 5  |-  ( I  =  ( B  |`  dom  I )  ->  (
I  C_  B  <->  ( B  |` 
dom  I )  C_  B ) )
108, 9mpbiri 248 . . . 4  |-  ( I  =  ( B  |`  dom  I )  ->  I  C_  B )
11 funssres 5930 . . . . . . 7  |-  ( ( Fun  B  /\  I  C_  B )  ->  ( B  |`  dom  I )  =  I )
1211eqcomd 2628 . . . . . 6  |-  ( ( Fun  B  /\  I  C_  B )  ->  I  =  ( B  |`  dom  I ) )
1312ex 450 . . . . 5  |-  ( Fun 
B  ->  ( I  C_  B  ->  I  =  ( B  |`  dom  I
) ) )
14133ad2ant2 1083 . . . 4  |-  ( ( G  e.  W  /\  Fun  B  /\  S  e.  U )  ->  (
I  C_  B  ->  I  =  ( B  |`  dom  I ) ) )
1510, 14impbid2 216 . . 3  |-  ( ( G  e.  W  /\  Fun  B  /\  S  e.  U )  ->  (
I  =  ( B  |`  dom  I )  <->  I  C_  B
) )
16153anbi2d 1404 . 2  |-  ( ( G  e.  W  /\  Fun  B  /\  S  e.  U )  ->  (
( V  C_  A  /\  I  =  ( B  |`  dom  I )  /\  E  C_  ~P V )  <->  ( V  C_  A  /\  I  C_  B  /\  E  C_  ~P V ) ) )
177, 16bitrd 268 1  |-  ( ( G  e.  W  /\  Fun  B  /\  S  e.  U )  ->  ( S SubGraph  G  <->  ( V  C_  A  /\  I  C_  B  /\  E  C_  ~P V
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    C_ wss 3574   ~Pcpw 4158   class class class wbr 4653   dom cdm 5114    |` cres 5116   Fun wfun 5882   ` cfv 5888  Vtxcvtx 25874  iEdgciedg 25875  Edgcedg 25939   SubGraph csubgr 26159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-res 5126  df-iota 5851  df-fun 5890  df-fv 5896  df-subgr 26160
This theorem is referenced by:  uhgrspansubgr  26183
  Copyright terms: Public domain W3C validator