MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istsr2 Structured version   Visualization version   Unicode version

Theorem istsr2 17218
Description: The predicate is a toset. (Contributed by FL, 1-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.)
Hypothesis
Ref Expression
istsr.1  |-  X  =  dom  R
Assertion
Ref Expression
istsr2  |-  ( R  e.  TosetRel 
<->  ( R  e.  PosetRel  /\  A. x  e.  X  A. y  e.  X  (
x R y  \/  y R x ) ) )
Distinct variable groups:    x, y, R    x, X, y

Proof of Theorem istsr2
StepHypRef Expression
1 istsr.1 . . 3  |-  X  =  dom  R
21istsr 17217 . 2  |-  ( R  e.  TosetRel 
<->  ( R  e.  PosetRel  /\  ( X  X.  X
)  C_  ( R  u.  `' R ) ) )
3 qfto 5517 . . 3  |-  ( ( X  X.  X ) 
C_  ( R  u.  `' R )  <->  A. x  e.  X  A. y  e.  X  ( x R y  \/  y R x ) )
43anbi2i 730 . 2  |-  ( ( R  e.  PosetRel  /\  ( X  X.  X )  C_  ( R  u.  `' R ) )  <->  ( R  e. 
PosetRel  /\  A. x  e.  X  A. y  e.  X  ( x R y  \/  y R x ) ) )
52, 4bitri 264 1  |-  ( R  e.  TosetRel 
<->  ( R  e.  PosetRel  /\  A. x  e.  X  A. y  e.  X  (
x R y  \/  y R x ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912    u. cun 3572    C_ wss 3574   class class class wbr 4653    X. cxp 5112   `'ccnv 5113   dom cdm 5114   PosetRelcps 17198    TosetRel ctsr 17199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-dm 5124  df-tsr 17201
This theorem is referenced by:  tsrlin  17219  tsrss  17223
  Copyright terms: Public domain W3C validator